{"title":"Development of gold nanocluster complex for the detection of tumor necrosis factor-alpha based on immunoassay","authors":"Natchanok Talapphet, Chang Soon Huh, Moon-Moo Kim","doi":"10.1016/j.jim.2024.113648","DOIUrl":null,"url":null,"abstract":"<div><p>Tumor necrosis factor-alpha, TNF-α, a cytokine recognized as a key regulator of inflammatory responses, is primarily produced by activated monocytes and macrophages. Measuring TNF-α levels serves as a valuable indicator for tracking several diseases and pathological states. Gold nanotechnology has been identified as a highly effective catalyst with unique properties for measuring inflammatory cytokines. This study aimed to synthesize gold nanoclusters (AuNCs) and the AuNCs-streptavidin system, along with their characterizations and spherical morphology. The detection of TNF-α antigen with AuNCs was determined, and a new immunoassay-based AuNCs analytical platform was studied. In this study, it was demonstrated that the synthesized AuNCs and AuNCs-streptavidin showed a bright-yellow appearance with absorption peaks at <em>A</em><sub>600</sub> and <em>A</em><sub>610</sub> nm, respectively. The approximately spherical shape was observed by TEM analysis. The AuNCs demonstrated a sensitivity limit for the detection of the TNF-α antigen, with a linear dose-dependent detection range of less than 1.25 ng/mL. The products of the band sizes and band intensities were proportional to the amount of TNF-α in the range of ∼80 kDa, ∼55 kDa, and ∼ 25 kDa in western blot analysis. The TNF-α in cell lysate was successfully detected using an immunoassay after the activation of RAW264.7 cells with lipopolysaccharide (LPS). This assay may serve as a viable alternative for TNF-α detection with high speed, sensitivity, and qualities, ensuring its broad applications.</p></div>","PeriodicalId":16000,"journal":{"name":"Journal of immunological methods","volume":"527 ","pages":"Article 113648"},"PeriodicalIF":1.6000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022175924000334","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor necrosis factor-alpha, TNF-α, a cytokine recognized as a key regulator of inflammatory responses, is primarily produced by activated monocytes and macrophages. Measuring TNF-α levels serves as a valuable indicator for tracking several diseases and pathological states. Gold nanotechnology has been identified as a highly effective catalyst with unique properties for measuring inflammatory cytokines. This study aimed to synthesize gold nanoclusters (AuNCs) and the AuNCs-streptavidin system, along with their characterizations and spherical morphology. The detection of TNF-α antigen with AuNCs was determined, and a new immunoassay-based AuNCs analytical platform was studied. In this study, it was demonstrated that the synthesized AuNCs and AuNCs-streptavidin showed a bright-yellow appearance with absorption peaks at A600 and A610 nm, respectively. The approximately spherical shape was observed by TEM analysis. The AuNCs demonstrated a sensitivity limit for the detection of the TNF-α antigen, with a linear dose-dependent detection range of less than 1.25 ng/mL. The products of the band sizes and band intensities were proportional to the amount of TNF-α in the range of ∼80 kDa, ∼55 kDa, and ∼ 25 kDa in western blot analysis. The TNF-α in cell lysate was successfully detected using an immunoassay after the activation of RAW264.7 cells with lipopolysaccharide (LPS). This assay may serve as a viable alternative for TNF-α detection with high speed, sensitivity, and qualities, ensuring its broad applications.
期刊介绍:
The Journal of Immunological Methods is devoted to covering techniques for: (1) Quantitating and detecting antibodies and/or antigens. (2) Purifying immunoglobulins, lymphokines and other molecules of the immune system. (3) Isolating antigens and other substances important in immunological processes. (4) Labelling antigens and antibodies. (5) Localizing antigens and/or antibodies in tissues and cells. (6) Detecting, and fractionating immunocompetent cells. (7) Assaying for cellular immunity. (8) Documenting cell-cell interactions. (9) Initiating immunity and unresponsiveness. (10) Transplanting tissues. (11) Studying items closely related to immunity such as complement, reticuloendothelial system and others. (12) Molecular techniques for studying immune cells and their receptors. (13) Imaging of the immune system. (14) Methods for production or their fragments in eukaryotic and prokaryotic cells.
In addition the journal will publish articles on novel methods for analysing the organization, structure and expression of genes for immunologically important molecules such as immunoglobulins, T cell receptors and accessory molecules involved in antigen recognition, processing and presentation. Submitted full length manuscripts should describe new methods of broad applicability to immunology and not simply the application of an established method to a particular substance - although papers describing such applications may be considered for publication as a short Technical Note. Review articles will also be published by the Journal of Immunological Methods. In general these manuscripts are by solicitation however anyone interested in submitting a review can contact the Reviews Editor and provide an outline of the proposed review.