Dermal absorption of cyclic and linear siloxanes: a review.

IF 6.4 2区 医学 Q1 ENVIRONMENTAL SCIENCES Journal of Toxicology and Environmental Health-Part B-Critical Reviews Pub Date : 2024-04-02 Epub Date: 2024-02-20 DOI:10.1080/10937404.2024.2316843
Harvey Clewell, Tracy Greene, Robinan Gentry
{"title":"Dermal absorption of cyclic and linear siloxanes: a review.","authors":"Harvey Clewell, Tracy Greene, Robinan Gentry","doi":"10.1080/10937404.2024.2316843","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclic and linear siloxanes are compounds synthesized from silicon consisting of alternating atoms of silicone and oxygen [Si-O] units with organic side chains. The most common cyclic siloxanes are octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), while the most common linear siloxanes are high molecular weight polydimethylsiloxanes (PDMS) and low molecular weight volatile linear siloxanes known as hexamethyldisiloxane (L2), octamethyltrisiloxane (L3), decamethyltetrasiloxane (L4), dodecamethylpentasiloxane (L5). These compounds (1) exhibit low dermal toxicity, (2) are generally inert and non-reactive, and (3) are compatible with a wide range of chemicals offering beneficial chemical properties which include the following: wash-off or transfer resistance from the skin, sun protection factor (SPF) enhancement, emolliency in cleaning products). Because of these properties, these compounds are incorporated into multiple consumer products for use on the skin, such as cosmetics and health-care products, with over 300,000 tons annually sold into the personal care and consumer products sector. Because of their widespread use in consumer products and potential for human dermal exposure, a comprehensive understanding of the dermal absorption and overall fate of siloxanes following dermal exposure is important. This review summarizes available data associated with the dermal absorption/penetration as well as fate of the most commonly used siloxane substances.</p>","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":" ","pages":"106-129"},"PeriodicalIF":6.4000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10937404.2024.2316843","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclic and linear siloxanes are compounds synthesized from silicon consisting of alternating atoms of silicone and oxygen [Si-O] units with organic side chains. The most common cyclic siloxanes are octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), while the most common linear siloxanes are high molecular weight polydimethylsiloxanes (PDMS) and low molecular weight volatile linear siloxanes known as hexamethyldisiloxane (L2), octamethyltrisiloxane (L3), decamethyltetrasiloxane (L4), dodecamethylpentasiloxane (L5). These compounds (1) exhibit low dermal toxicity, (2) are generally inert and non-reactive, and (3) are compatible with a wide range of chemicals offering beneficial chemical properties which include the following: wash-off or transfer resistance from the skin, sun protection factor (SPF) enhancement, emolliency in cleaning products). Because of these properties, these compounds are incorporated into multiple consumer products for use on the skin, such as cosmetics and health-care products, with over 300,000 tons annually sold into the personal care and consumer products sector. Because of their widespread use in consumer products and potential for human dermal exposure, a comprehensive understanding of the dermal absorption and overall fate of siloxanes following dermal exposure is important. This review summarizes available data associated with the dermal absorption/penetration as well as fate of the most commonly used siloxane substances.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环状和线性硅氧烷的皮肤吸收:综述。
环状和线状硅氧烷是由硅合成的化合物,由硅原子和氧原子[Si-O]单元交替组成,并带有有机侧链。最常见的环状硅氧烷是八甲基环四硅氧烷(D4)、十甲基环五硅氧烷(D5)和十二甲基环六硅氧烷(D6)、而最常见的线性硅氧烷是高分子量的聚二甲基硅氧烷(PDMS)和低分子量的挥发性线性硅氧烷,称为六甲基二硅氧烷(L2)、八甲基三硅氧烷(L3)、十甲基四硅氧烷(L4)和十二甲基五硅氧烷(L5)。这些化合物(1) 皮肤毒性低,(2) 一般为惰性,无反应,(3) 可与多种化学品兼容,具有以下有益的化学特性:耐洗或耐皮肤转移,提高防晒系数 (SPF),在清洁产品中具有润肤效果)。由于这些特性,这些化合物被用于多种皮肤消费品中,如化妆品和保健品,每年在个人护理和消费品领域的销售量超过 30 万吨。由于硅氧烷在消费品中的广泛应用以及人体皮肤接触硅氧烷的可能性,因此全面了解皮肤对硅氧烷的吸收情况以及皮肤接触硅氧烷后的总体归宿非常重要。本综述总结了与最常用硅氧烷物质的皮肤吸收/渗透和最终结果相关的现有数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.80
自引率
6.90%
发文量
13
审稿时长
>24 weeks
期刊介绍: "Journal of Toxicology and Environmental Health: Part B - Critical Reviews" is an academic journal published by Taylor & Francis, focusing on the critical examination of research in the areas of environmental exposure and population health. With an ISSN identifier of 1093-7404, this journal has established itself as a significant source of scholarly content in the field of toxicology and environmental health. Since its inception, the journal has published over 424 articles that have garnered 35,097 citations, reflecting its impact and relevance in the scientific community. Known for its comprehensive reviews, the journal also goes by the names "Critical Reviews" and "Journal of Toxicology & Environmental Health, Part B, Critical Reviews." The journal's mission is to provide a platform for in-depth analysis and critical discussion of the latest findings in toxicology, environmental health, and related disciplines. By doing so, it contributes to the advancement of knowledge and understanding of the complex interactions between environmental factors and human health, aiding in the development of strategies to protect and improve public health.
期刊最新文献
Neutrophils in toxicology: a forgotten field. Neuroendocrine contribution to sex-related variations in adverse air pollution health effects. Local and systemic effects of microplastic particles through cell damage, release of chemicals and drugs, dysbiosis, and interference with the absorption of nutrients. Incorporating new approach methods (NAMs) data in dose-response assessments: The future is now! In vitro models to evaluate multidrug resistance in cancer cells: Biochemical and morphological techniques and pharmacological strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1