David Barnidge , Derek Troske , Simon North , Gregg Wallis , Mark Perkins , Stephen Harding
{"title":"Endogenous monoclonal immunoglobulins analyzed using the EXENT® solution and LC-MS","authors":"David Barnidge , Derek Troske , Simon North , Gregg Wallis , Mark Perkins , Stephen Harding","doi":"10.1016/j.jmsacl.2024.02.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>The EXENT® Solution, a fully automated system, is a recent advancement for identifying and quantifying monoclonal immunoglobulins in serum. It combines immunoprecipitation with MALDI-TOF mass spectrometry. Compared to gel-based methods, like SPEP and IFE, it has demonstrated the ability to detect monoclonal immunoglobulins in serum at lower levels. In this study, samples that tested negative using EXENT® were reflexed to LC-MS to determine if the more sensitive LC-MS method could identify monoclonal immunoglobulins missed by EXENT®.</p></div><div><h3>Objectives</h3><p>To assess whether monoclonal immunoglobulins that are not detected by EXENT® can be detected by LC-MS using a low flow LC system coupled to a Q-TOF mass spectrometer.</p></div><div><h3>Methods</h3><p>Samples obtained from patients confirmed to have multiple myeloma (MM) were diluted with pooled polyclonal human serum and analyzed using EXENT®. If a specific monoclonal immunoglobulin was not detected by EXENT®, the sample was then subjected to analysis by LC-MS. For the LC-MS analysis, the sample eluate, obtained after the MALDI-TOF MS spotting step, was collected and transferred to an autosampler tray for subsequent analysis using LC-MS.</p></div><div><h3>Conclusion</h3><p>LC-MS has the capability to detect monoclonal immunoglobulins that are no longer detected by EXENT®. Reflexing samples to LC-MS for analysis does not involve additional sample handling, allowing for a faster time-to-result compared to current approaches, such as Next-Generation Sequencing, Next-Generation Flow, and clonotypic peptide methods. Notably, LC-MS offers equivalent sensitivity in detecting these specific monoclonal immunoglobulins.</p></div>","PeriodicalId":52406,"journal":{"name":"Journal of Mass Spectrometry and Advances in the Clinical Lab","volume":"32 ","pages":"Pages 31-40"},"PeriodicalIF":3.1000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667145X24000154/pdfft?md5=f1ce04da5778089272707013515f00cc&pid=1-s2.0-S2667145X24000154-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry and Advances in the Clinical Lab","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667145X24000154","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
The EXENT® Solution, a fully automated system, is a recent advancement for identifying and quantifying monoclonal immunoglobulins in serum. It combines immunoprecipitation with MALDI-TOF mass spectrometry. Compared to gel-based methods, like SPEP and IFE, it has demonstrated the ability to detect monoclonal immunoglobulins in serum at lower levels. In this study, samples that tested negative using EXENT® were reflexed to LC-MS to determine if the more sensitive LC-MS method could identify monoclonal immunoglobulins missed by EXENT®.
Objectives
To assess whether monoclonal immunoglobulins that are not detected by EXENT® can be detected by LC-MS using a low flow LC system coupled to a Q-TOF mass spectrometer.
Methods
Samples obtained from patients confirmed to have multiple myeloma (MM) were diluted with pooled polyclonal human serum and analyzed using EXENT®. If a specific monoclonal immunoglobulin was not detected by EXENT®, the sample was then subjected to analysis by LC-MS. For the LC-MS analysis, the sample eluate, obtained after the MALDI-TOF MS spotting step, was collected and transferred to an autosampler tray for subsequent analysis using LC-MS.
Conclusion
LC-MS has the capability to detect monoclonal immunoglobulins that are no longer detected by EXENT®. Reflexing samples to LC-MS for analysis does not involve additional sample handling, allowing for a faster time-to-result compared to current approaches, such as Next-Generation Sequencing, Next-Generation Flow, and clonotypic peptide methods. Notably, LC-MS offers equivalent sensitivity in detecting these specific monoclonal immunoglobulins.