{"title":"EEG-FRM: a neural network based familiar and unfamiliar face EEG recognition method","authors":"Chao Chen, Lingfeng Fan, Ying Gao, Shuang Qiu, Wei Wei, Huiguang He","doi":"10.1007/s11571-024-10073-5","DOIUrl":null,"url":null,"abstract":"<p>Recognizing familiar faces holds great value in various fields such as medicine, criminal investigation, and lie detection. In this paper, we designed a Complex Trial Protocol-based familiar and unfamiliar face recognition experiment that using self-face information, and collected EEG data from 147 subjects. A novel neural network-based method, the EEG-based Face Recognition Model (EEG-FRM), is proposed in this paper for cross-subject familiar/unfamiliar face recognition, which combines a multi-scale convolutional classification network with the maximum probability mechanism to realize individual face recognition. The multi-scale convolutional neural network extracts temporal information and spatial features from the EEG data, the attention module and supervised contrastive learning module are employed to promote the classification performance. Experimental results on the dataset reveal that familiar face stimuli could evoke significant P300 responses, mainly concentrated in the parietal lobe and nearby regions. Our proposed model achieved impressive results, with a balanced accuracy of 85.64%, a true positive rate of 73.23%, and a false positive rate of 1.96% on the collected dataset, outperforming other compared methods. The experimental results demonstrate the effectiveness and superiority of our proposed model.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"100 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10073-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recognizing familiar faces holds great value in various fields such as medicine, criminal investigation, and lie detection. In this paper, we designed a Complex Trial Protocol-based familiar and unfamiliar face recognition experiment that using self-face information, and collected EEG data from 147 subjects. A novel neural network-based method, the EEG-based Face Recognition Model (EEG-FRM), is proposed in this paper for cross-subject familiar/unfamiliar face recognition, which combines a multi-scale convolutional classification network with the maximum probability mechanism to realize individual face recognition. The multi-scale convolutional neural network extracts temporal information and spatial features from the EEG data, the attention module and supervised contrastive learning module are employed to promote the classification performance. Experimental results on the dataset reveal that familiar face stimuli could evoke significant P300 responses, mainly concentrated in the parietal lobe and nearby regions. Our proposed model achieved impressive results, with a balanced accuracy of 85.64%, a true positive rate of 73.23%, and a false positive rate of 1.96% on the collected dataset, outperforming other compared methods. The experimental results demonstrate the effectiveness and superiority of our proposed model.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.