Versatile spaceborne photonics with chalcogenide phase-change materials.

IF 4.4 1区 物理与天体物理 Q1 MULTIDISCIPLINARY SCIENCES npj Microgravity Pub Date : 2024-02-20 DOI:10.1038/s41526-024-00358-8
Hyun Jung Kim, Matthew Julian, Calum Williams, David Bombara, Juejun Hu, Tian Gu, Kiumars Aryana, Godfrey Sauti, William Humphreys
{"title":"Versatile spaceborne photonics with chalcogenide phase-change materials.","authors":"Hyun Jung Kim, Matthew Julian, Calum Williams, David Bombara, Juejun Hu, Tian Gu, Kiumars Aryana, Godfrey Sauti, William Humphreys","doi":"10.1038/s41526-024-00358-8","DOIUrl":null,"url":null,"abstract":"<p><p>Recent growth in space systems has seen increasing capabilities packed into smaller and lighter Earth observation and deep space mission spacecraft. Phase-change materials (PCMs) are nonvolatile, reconfigurable, fast-switching, and have recently shown a high degree of space radiation tolerance, thereby making them an attractive materials platform for spaceborne photonics applications. They promise robust, lightweight, and energy-efficient reconfigurable optical systems whose functions can be dynamically defined on-demand and on-orbit to deliver enhanced science or mission support in harsh environments on lean power budgets. This comment aims to discuss the recent advances in rapidly growing PCM research and its potential to transition from conventional terrestrial optoelectronics materials platforms to versatile spaceborne photonic materials platforms for current and next-generation space and science missions. Materials International Space Station Experiment-14 (MISSE-14) mission-flown PCMs outside of the International Space Station (ISS) and key results and NASA examples are highlighted to provide strong evidence of the applicability of spaceborne photonics.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"20"},"PeriodicalIF":4.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879159/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00358-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Recent growth in space systems has seen increasing capabilities packed into smaller and lighter Earth observation and deep space mission spacecraft. Phase-change materials (PCMs) are nonvolatile, reconfigurable, fast-switching, and have recently shown a high degree of space radiation tolerance, thereby making them an attractive materials platform for spaceborne photonics applications. They promise robust, lightweight, and energy-efficient reconfigurable optical systems whose functions can be dynamically defined on-demand and on-orbit to deliver enhanced science or mission support in harsh environments on lean power budgets. This comment aims to discuss the recent advances in rapidly growing PCM research and its potential to transition from conventional terrestrial optoelectronics materials platforms to versatile spaceborne photonic materials platforms for current and next-generation space and science missions. Materials International Space Station Experiment-14 (MISSE-14) mission-flown PCMs outside of the International Space Station (ISS) and key results and NASA examples are highlighted to provide strong evidence of the applicability of spaceborne photonics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用卤化铬化物相变材料的多功能空间光子学。
近年来,随着空间系统的发展,体积更小、重量更轻的地球观测和深空任务航天器的功能越来越多。相变材料(PCM)具有非易失性、可重新配置、快速开关等特点,最近还显示出较高的空间辐射耐受性,因此成为太空光子学应用中极具吸引力的材料平台。它们有望成为坚固耐用、重量轻、高能效的可重新配置光学系统,其功能可按需和在轨动态定义,在恶劣环境中以有限的电力预算提供更强的科学或任务支持。本评论旨在讨论快速发展的 PCM 研究的最新进展及其从传统地面光电材料平台过渡到多功能空间光子材料平台的潜力,以用于当前和下一代空间和科学任务。重点介绍了国际空间站实验-14(MISSE-14)任务在国际空间站(ISS)外飞行的 PCM 以及关键成果和 NASA 示例,为空间光子学的适用性提供了有力证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Microgravity
npj Microgravity Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍: A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.
期刊最新文献
Stressors affect human motor timing during spaceflight. Development and characterization of a low intensity vibrational system for microgravity studies. Challenges for the human immune system after leaving Earth. Retinal blood vessel diameter changes with 60-day head-down bedrest are unaffected by antioxidant nutritional cocktail. Articular cartilage loss is an unmitigated risk of human spaceflight.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1