{"title":"Cell counting to monitor swab efficiency","authors":"Madison Nolan BSc (Hons), Adrian Linacre DPhil","doi":"10.1111/1556-4029.15495","DOIUrl":null,"url":null,"abstract":"<p>Plastic bags, such as ziplock bags, have been used to transport illicit materials worldwide; however, very few studies have tried to optimize the recovery of DNA from these items. This study reports on the best combination of swabs and moistening solution for the greatest recovery of cellular material from ziplock bags. Five swabs, two different variations of Copan Diagnostics nylon 4N6FLOQSwabs, one Medical Wire rayon DRYSWAB, one IsoHelix rayon swab, and one Livingstone cotton swab, were evaluated with two moistening solutions, Triton X-100 in either distilled water or isopropanol. Fingermarks were deposited on ziplock bags and stained with Diamond™ Nucleic Acid Dye to allow visualization of the cells pre- and post-swabbing to determine the number of cells recovered. Based on cell counting data, swabs moistened with Triton X-100 in distilled water performed better than those moistened with isopropanol. Livingstone cotton swabs had the worst recovery of cellular material, while the other swabs tested had no significant difference in their respective solutions. A comparison of the best three swabs for cellular recovery yielded no differences in the DNA concentration extracted. A linear relationship was observed between the log number of cells recovered by swabbing and the DNA concentration following extraction and quantification. The process of monitoring cell collection using fluorescence microscopy on ziplock bags allowed evaluation of swabbing efficacy. Additionally, this study highlights the ability to evaluate cellular recovery independently of traditional extraction, quantification, or profiling techniques which may unequally affect samples.</p>","PeriodicalId":15743,"journal":{"name":"Journal of forensic sciences","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1556-4029.15495","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1556-4029.15495","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0
Abstract
Plastic bags, such as ziplock bags, have been used to transport illicit materials worldwide; however, very few studies have tried to optimize the recovery of DNA from these items. This study reports on the best combination of swabs and moistening solution for the greatest recovery of cellular material from ziplock bags. Five swabs, two different variations of Copan Diagnostics nylon 4N6FLOQSwabs, one Medical Wire rayon DRYSWAB, one IsoHelix rayon swab, and one Livingstone cotton swab, were evaluated with two moistening solutions, Triton X-100 in either distilled water or isopropanol. Fingermarks were deposited on ziplock bags and stained with Diamond™ Nucleic Acid Dye to allow visualization of the cells pre- and post-swabbing to determine the number of cells recovered. Based on cell counting data, swabs moistened with Triton X-100 in distilled water performed better than those moistened with isopropanol. Livingstone cotton swabs had the worst recovery of cellular material, while the other swabs tested had no significant difference in their respective solutions. A comparison of the best three swabs for cellular recovery yielded no differences in the DNA concentration extracted. A linear relationship was observed between the log number of cells recovered by swabbing and the DNA concentration following extraction and quantification. The process of monitoring cell collection using fluorescence microscopy on ziplock bags allowed evaluation of swabbing efficacy. Additionally, this study highlights the ability to evaluate cellular recovery independently of traditional extraction, quantification, or profiling techniques which may unequally affect samples.
期刊介绍:
The Journal of Forensic Sciences (JFS) is the official publication of the American Academy of Forensic Sciences (AAFS). It is devoted to the publication of original investigations, observations, scholarly inquiries and reviews in various branches of the forensic sciences. These include anthropology, criminalistics, digital and multimedia sciences, engineering and applied sciences, pathology/biology, psychiatry and behavioral science, jurisprudence, odontology, questioned documents, and toxicology. Similar submissions dealing with forensic aspects of other sciences and the social sciences are also accepted, as are submissions dealing with scientifically sound emerging science disciplines. The content and/or views expressed in the JFS are not necessarily those of the AAFS, the JFS Editorial Board, the organizations with which authors are affiliated, or the publisher of JFS. All manuscript submissions are double-blind peer-reviewed.