{"title":"Metabolism of the tropine indole-3-carboxylate ICS 205-930 by differentiated rat and human hepatoma cells.","authors":"V Fischer, J P Baldeck, F J Wiebel","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The metabolism of the tropine indole-3-carboxylate ICS 205-930 (ICS), a highly potent and selective antagonist of 5-HT3 receptors, was investigated in continuous cell lines derived from rat or human liver and compared to the in vivo metabolism in rat and human. The well-differentiated rat hepatoma line 2sFou extensively metabolized ICS by hydroxylation of the indole moiety and subsequent conjugation to form the corresponding glucuronides and sulfates. The 2sFou cells also oxidized ICS at the tropinyl moiety to form both N-demethyl and N-oxide derivatives. The relative amount of the various metabolites was dependent on the substrate concentration. Pretreatment of the cells with dexamethasone increased the rate of metabolism for all pathways, while benz[a]anthracene caused an increase in hydroxylation at the indole moiety at the expense of N-oxidation. Phenobarbital pretreatment had no effect on ICS metabolism. The pattern of metabolites formed in 2sFou cells was qualitatively similar to that formed in rat urine. The human hepatoma line HepG2 metabolized ICS only to a small extent. The HepG2 cells failed to form detectable amounts of ICS conjugates found in human urine. The N-oxide-ICS was not found in HepG2 cells or in human urine. Virtually no ICS metabolites were found in human lung adenocarcinoma lines NCI-H358 or NCI-H322. The results suggest that continuous cell lines such as the differentiated rat hepatoma cells 2sFou might be used to mimic the metabolism of xenobiotics in rat and to clarify their complex metabolic pathways.</p>","PeriodicalId":77750,"journal":{"name":"Molecular toxicology","volume":"1 4","pages":"341-50"},"PeriodicalIF":0.0000,"publicationDate":"1987-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular toxicology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The metabolism of the tropine indole-3-carboxylate ICS 205-930 (ICS), a highly potent and selective antagonist of 5-HT3 receptors, was investigated in continuous cell lines derived from rat or human liver and compared to the in vivo metabolism in rat and human. The well-differentiated rat hepatoma line 2sFou extensively metabolized ICS by hydroxylation of the indole moiety and subsequent conjugation to form the corresponding glucuronides and sulfates. The 2sFou cells also oxidized ICS at the tropinyl moiety to form both N-demethyl and N-oxide derivatives. The relative amount of the various metabolites was dependent on the substrate concentration. Pretreatment of the cells with dexamethasone increased the rate of metabolism for all pathways, while benz[a]anthracene caused an increase in hydroxylation at the indole moiety at the expense of N-oxidation. Phenobarbital pretreatment had no effect on ICS metabolism. The pattern of metabolites formed in 2sFou cells was qualitatively similar to that formed in rat urine. The human hepatoma line HepG2 metabolized ICS only to a small extent. The HepG2 cells failed to form detectable amounts of ICS conjugates found in human urine. The N-oxide-ICS was not found in HepG2 cells or in human urine. Virtually no ICS metabolites were found in human lung adenocarcinoma lines NCI-H358 or NCI-H322. The results suggest that continuous cell lines such as the differentiated rat hepatoma cells 2sFou might be used to mimic the metabolism of xenobiotics in rat and to clarify their complex metabolic pathways.