Raffaele Barretta , Raimondo Luciano , Francesco Marotti de Sciarra , Marzia Sara Vaccaro
{"title":"Modelling issues and advances in nonlocal beams mechanics","authors":"Raffaele Barretta , Raimondo Luciano , Francesco Marotti de Sciarra , Marzia Sara Vaccaro","doi":"10.1016/j.ijengsci.2024.104042","DOIUrl":null,"url":null,"abstract":"<div><p>Nonlocal continuum mechanics presents still open questions about applicability of integral constitutive theories to nanostructures of current interest in Engineering Science. Nevertheless, nonlocal elasticity is widely exploited to model size effects in small-scale structures since it represents an effective tool to avoid computationally expensive procedures. The known strain-driven approach proposed by Eringen has shown an intrinsic incompatibility between constitutive and equilibrium requirements when applied to structures. Such an issue has been acknowledged by the scientific community merely for bounded continua. For structural problems defined in unbounded domains, obstruction to equilibrium caused by the strain-driven formulation is a still open issue. The present contribution definitely proves inapplicability of the strain-driven spatial convolution to structural mechanics and proposes a consistent nonlocal approach for both bounded and unbounded structures. The presented methodology is based on stress-driven spatial convolutions, representing the key paradigm to formulate a well-posed theory of integral elasticity and to effectively model scale effects in nanobeams of applicative interest in Nano-Mechanics.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"198 ","pages":"Article 104042"},"PeriodicalIF":5.7000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524000260/pdfft?md5=86229d7311a7320f337dfe951fac1f46&pid=1-s2.0-S0020722524000260-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524000260","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nonlocal continuum mechanics presents still open questions about applicability of integral constitutive theories to nanostructures of current interest in Engineering Science. Nevertheless, nonlocal elasticity is widely exploited to model size effects in small-scale structures since it represents an effective tool to avoid computationally expensive procedures. The known strain-driven approach proposed by Eringen has shown an intrinsic incompatibility between constitutive and equilibrium requirements when applied to structures. Such an issue has been acknowledged by the scientific community merely for bounded continua. For structural problems defined in unbounded domains, obstruction to equilibrium caused by the strain-driven formulation is a still open issue. The present contribution definitely proves inapplicability of the strain-driven spatial convolution to structural mechanics and proposes a consistent nonlocal approach for both bounded and unbounded structures. The presented methodology is based on stress-driven spatial convolutions, representing the key paradigm to formulate a well-posed theory of integral elasticity and to effectively model scale effects in nanobeams of applicative interest in Nano-Mechanics.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.