COSMIC-dFBA: A novel multi-scale hybrid framework for bioprocess modeling

IF 6.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Metabolic engineering Pub Date : 2024-02-20 DOI:10.1016/j.ymben.2024.02.012
Saratram Gopalakrishnan , William Johnson , Miguel A. Valderrama-Gomez , Elcin Icten , Jasmine Tat , Michael Ingram , Coral Fung Shek , Pik K. Chan , Fabrice Schlegel , Pablo Rolandi , Cleo Kontoravdi , Nathan E. Lewis
{"title":"COSMIC-dFBA: A novel multi-scale hybrid framework for bioprocess modeling","authors":"Saratram Gopalakrishnan ,&nbsp;William Johnson ,&nbsp;Miguel A. Valderrama-Gomez ,&nbsp;Elcin Icten ,&nbsp;Jasmine Tat ,&nbsp;Michael Ingram ,&nbsp;Coral Fung Shek ,&nbsp;Pik K. Chan ,&nbsp;Fabrice Schlegel ,&nbsp;Pablo Rolandi ,&nbsp;Cleo Kontoravdi ,&nbsp;Nathan E. Lewis","doi":"10.1016/j.ymben.2024.02.012","DOIUrl":null,"url":null,"abstract":"<div><p>Metabolism governs cell performance in biomanufacturing, as it fuels growth and productivity. However, even in well-controlled culture systems, metabolism is dynamic, with shifting objectives and resources, thus limiting the predictive capability of mechanistic models for process design and optimization. Here, we present Cellular Objectives and State Modulation In bioreaCtors (COSMIC)-dFBA, a hybrid multi-scale modeling paradigm that accurately predicts cell density, antibody titer, and bioreactor metabolite concentration profiles. Using machine-learning, COSMIC-dFBA decomposes the instantaneous metabolite uptake and secretion rates in a bioreactor into weighted contributions from each cell state (growth or antibody-producing state) and integrates these with a genome-scale metabolic model. A major strength of COSMIC-dFBA is that it can be parameterized with only metabolite concentrations from spent media, although constraining the metabolic model with other omics data can further improve its capabilities. Using COSMIC-dFBA, we can predict the final cell density and antibody titer to within 10% of the measured data, and compared to a standard dFBA model, we found the framework showed a 90% and 72% improvement in cell density and antibody titer prediction, respectively. Thus, we demonstrate our hybrid modeling framework effectively captures cellular metabolism and expands the applicability of dFBA to model the dynamic conditions in a bioreactor.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"82 ","pages":"Pages 183-192"},"PeriodicalIF":6.8000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717624000284","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolism governs cell performance in biomanufacturing, as it fuels growth and productivity. However, even in well-controlled culture systems, metabolism is dynamic, with shifting objectives and resources, thus limiting the predictive capability of mechanistic models for process design and optimization. Here, we present Cellular Objectives and State Modulation In bioreaCtors (COSMIC)-dFBA, a hybrid multi-scale modeling paradigm that accurately predicts cell density, antibody titer, and bioreactor metabolite concentration profiles. Using machine-learning, COSMIC-dFBA decomposes the instantaneous metabolite uptake and secretion rates in a bioreactor into weighted contributions from each cell state (growth or antibody-producing state) and integrates these with a genome-scale metabolic model. A major strength of COSMIC-dFBA is that it can be parameterized with only metabolite concentrations from spent media, although constraining the metabolic model with other omics data can further improve its capabilities. Using COSMIC-dFBA, we can predict the final cell density and antibody titer to within 10% of the measured data, and compared to a standard dFBA model, we found the framework showed a 90% and 72% improvement in cell density and antibody titer prediction, respectively. Thus, we demonstrate our hybrid modeling framework effectively captures cellular metabolism and expands the applicability of dFBA to model the dynamic conditions in a bioreactor.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COSMIC-dFBA:用于生物过程建模的新型多尺度混合框架
新陈代谢决定着生物制造中细胞的性能,因为它能促进细胞的生长和提高生产率。然而,即使在控制良好的培养系统中,新陈代谢也是动态的,其目标和资源会发生变化,从而限制了用于工艺设计和优化的机理模型的预测能力。在这里,我们介绍了生物反应器中的细胞目标和状态调控(COSMIC)-dFBA,这是一种多尺度混合建模范例,能准确预测细胞密度、抗体滴度和生物反应器代谢物浓度曲线。通过机器学习,COSMIC-dFBA 将生物反应器中的瞬时代谢物吸收率和分泌率分解为来自各细胞状态(生长或抗体产生状态)的加权贡献,并将这些贡献与基因组尺度的代谢模型进行整合。COSMIC-dFBA的一个主要优势是,它可以仅使用废培养基中的代谢物浓度进行参数设置,尽管使用其他omics数据对代谢模型进行约束可以进一步提高其能力。与标准的 dFBA 模型相比,我们发现该框架在细胞密度和抗体滴度预测方面分别提高了 90% 和 72%。因此,我们证明了我们的混合建模框架能有效捕捉细胞新陈代谢,并扩大了 dFBA 在生物反应器动态条件建模中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolic engineering
Metabolic engineering 工程技术-生物工程与应用微生物
CiteScore
15.60
自引率
6.00%
发文量
140
审稿时长
44 days
期刊介绍: Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.
期刊最新文献
Network for Knowledge Organization (NEKO): an AI knowledge mining workflow for synthetic biology research. Flux balance analysis and peptide mapping elucidate the impact of bioreactor pH on Chinese Hamster Ovary (CHO) cell metabolism and N-linked glycosylation in the Fab and Fc regions of the produced IgG. Unraveling productivity-enhancing genes in Chinese hamster ovary cells via CRISPR activation screening using recombinase-mediated cassette exchange system. Deep learning for NAD/NADP cofactor prediction and engineering using transformer attention analysis in enzymes. The faucet knob effect of DptE crotonylation on the initial flow of daptomycin biosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1