Marius Vieth, Ali Rahimi, Ashena Gorgan Mohammadi, Jochen Triesch, Mohammad Ganjtabesh
{"title":"Accelerating spiking neural network simulations with PymoNNto and PymoNNtorch","authors":"Marius Vieth, Ali Rahimi, Ashena Gorgan Mohammadi, Jochen Triesch, Mohammad Ganjtabesh","doi":"10.3389/fninf.2024.1331220","DOIUrl":null,"url":null,"abstract":"Spiking neural network simulations are a central tool in Computational Neuroscience, Artificial Intelligence, and Neuromorphic Engineering research. A broad range of simulators and software frameworks for such simulations exist with different target application areas. Among these, PymoNNto is a recent Python-based toolbox for spiking neural network simulations that emphasizes the embedding of custom code in a modular and flexible way. While PymoNNto already supports GPU implementations, its backend relies on NumPy operations. Here we introduce PymoNNtorch, which is natively implemented with PyTorch while retaining PymoNNto's modular design. Furthermore, we demonstrate how changes to the implementations of common network operations in combination with PymoNNtorch's native GPU support can offer speed-up over conventional simulators like NEST, ANNarchy, and Brian 2 in certain situations. Overall, we show how PymoNNto's modular and flexible design in combination with PymoNNtorch's GPU acceleration and optimized indexing operations facilitate research and development of spiking neural networks in the Python programming language.","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"45 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2024.1331220","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spiking neural network simulations are a central tool in Computational Neuroscience, Artificial Intelligence, and Neuromorphic Engineering research. A broad range of simulators and software frameworks for such simulations exist with different target application areas. Among these, PymoNNto is a recent Python-based toolbox for spiking neural network simulations that emphasizes the embedding of custom code in a modular and flexible way. While PymoNNto already supports GPU implementations, its backend relies on NumPy operations. Here we introduce PymoNNtorch, which is natively implemented with PyTorch while retaining PymoNNto's modular design. Furthermore, we demonstrate how changes to the implementations of common network operations in combination with PymoNNtorch's native GPU support can offer speed-up over conventional simulators like NEST, ANNarchy, and Brian 2 in certain situations. Overall, we show how PymoNNto's modular and flexible design in combination with PymoNNtorch's GPU acceleration and optimized indexing operations facilitate research and development of spiking neural networks in the Python programming language.
期刊介绍:
Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states.
Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.