{"title":"The recirculation flow after different cross-section shaped high-rise buildings with applications to ventilation assessment and drag parameterization","authors":"Keyi Chen, Ziwei Mo, Jian Hang","doi":"10.1007/s12273-024-1103-z","DOIUrl":null,"url":null,"abstract":"<p>The building cross-section shape significantly affects the flow characteristics around buildings, especially the recirculation region behind the high-rise building. Eight generic building shapes including square, triangle, octagon, T-shaped, cross-shaped, #-shaped, H-shaped and L-shaped are examined to elucidate their effects on the flow patterns, recirculation length <i>L</i> and areas <i>A</i> using computational fluid dynamics (CFD) simulations with Reynolds-averaged Navier-Stokes (RANS) approach. The sizes and positions of the vortexes behind the buildings are found to be substantially affected by the building shapes and subsequently changing the recirculation flows. The recirculation length <i>L</i> is in the range of 1.6<i>b</i>–2.6<i>b</i> with an average of 2<i>b</i>. The maximum <i>L</i> is found for L-shaped building (2.6<i>b</i>) while the shortest behind octagon building (1.6<i>b</i>). The vertical recirculation area <i>A</i><sub>v</sub> is in the range of 1.5<i>b</i><sup>2</sup>–3.2<i>b</i><sup>2</sup> and horizontal area <i>A</i><sub>h</sub> in 0.9<i>b</i><sup>2</sup>–2.2<i>b</i><sup>2</sup>. The <i>L</i>, <i>A</i><sub>v</sub> and <i>A</i><sub>h</sub> generally increase with increasing approaching frontal area when the wind direction changes but subject to the dent structures of the #-shaped and cross-shaped buildings. The area-averaged wind velocity ratio (AVR), which is proposed to assess the ventilation performance, is in the range of 0.05 and 0.14, which is around a three-fold difference among the different building shapes. The drag coefficient parameterized by <i>A</i><sub>h</sub> varies significantly, suggesting that previous models without accounting for building shape effect could result in large uncertainty in the drag predictions. These findings provide important reference for improving pedestrian wind environment and shed some light on refining the urban canopy parameterization by considering the building shape effect.</p>","PeriodicalId":49226,"journal":{"name":"Building Simulation","volume":"13 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12273-024-1103-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The building cross-section shape significantly affects the flow characteristics around buildings, especially the recirculation region behind the high-rise building. Eight generic building shapes including square, triangle, octagon, T-shaped, cross-shaped, #-shaped, H-shaped and L-shaped are examined to elucidate their effects on the flow patterns, recirculation length L and areas A using computational fluid dynamics (CFD) simulations with Reynolds-averaged Navier-Stokes (RANS) approach. The sizes and positions of the vortexes behind the buildings are found to be substantially affected by the building shapes and subsequently changing the recirculation flows. The recirculation length L is in the range of 1.6b–2.6b with an average of 2b. The maximum L is found for L-shaped building (2.6b) while the shortest behind octagon building (1.6b). The vertical recirculation area Av is in the range of 1.5b2–3.2b2 and horizontal area Ah in 0.9b2–2.2b2. The L, Av and Ah generally increase with increasing approaching frontal area when the wind direction changes but subject to the dent structures of the #-shaped and cross-shaped buildings. The area-averaged wind velocity ratio (AVR), which is proposed to assess the ventilation performance, is in the range of 0.05 and 0.14, which is around a three-fold difference among the different building shapes. The drag coefficient parameterized by Ah varies significantly, suggesting that previous models without accounting for building shape effect could result in large uncertainty in the drag predictions. These findings provide important reference for improving pedestrian wind environment and shed some light on refining the urban canopy parameterization by considering the building shape effect.
期刊介绍:
Building Simulation: An International Journal publishes original, high quality, peer-reviewed research papers and review articles dealing with modeling and simulation of buildings including their systems. The goal is to promote the field of building science and technology to such a level that modeling will eventually be used in every aspect of building construction as a routine instead of an exception. Of particular interest are papers that reflect recent developments and applications of modeling tools and their impact on advances of building science and technology.