{"title":"Risk Sharing with Lambda Value at Risk","authors":"Peng Liu","doi":"10.1287/moor.2023.0246","DOIUrl":null,"url":null,"abstract":"In this paper, we study the risk-sharing problem among multiple agents using lambda value at risk ([Formula: see text]) as their preferences via the tool of inf-convolution, where [Formula: see text] is an extension of value at risk ([Formula: see text]). We obtain explicit formulas of the inf-convolution of multiple [Formula: see text] with monotone Λ and explicit forms of the corresponding optimal allocations, extending the results of the inf-convolution of [Formula: see text]. It turns out that the inf-convolution of several [Formula: see text] is still a [Formula: see text] under some mild condition. Moreover, we investigate the inf-convolution of one [Formula: see text] and a general monotone risk measure without cash additivity, including [Formula: see text], expected utility, and rank-dependent expected utility as special cases. The expression of the inf-convolution and the explicit forms of the optimal allocation are derived, leading to some partial solution of the risk-sharing problem with multiple [Formula: see text] for general Λ functions. Finally, we discuss the risk-sharing problem with [Formula: see text], another definition of lambda value at risk. We focus on the inf-convolution of [Formula: see text] and a risk measure that is consistent with the second-order stochastic dominance, deriving very different expression of the inf-convolution and the forms of the optimal allocations.","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"234 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0246","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the risk-sharing problem among multiple agents using lambda value at risk ([Formula: see text]) as their preferences via the tool of inf-convolution, where [Formula: see text] is an extension of value at risk ([Formula: see text]). We obtain explicit formulas of the inf-convolution of multiple [Formula: see text] with monotone Λ and explicit forms of the corresponding optimal allocations, extending the results of the inf-convolution of [Formula: see text]. It turns out that the inf-convolution of several [Formula: see text] is still a [Formula: see text] under some mild condition. Moreover, we investigate the inf-convolution of one [Formula: see text] and a general monotone risk measure without cash additivity, including [Formula: see text], expected utility, and rank-dependent expected utility as special cases. The expression of the inf-convolution and the explicit forms of the optimal allocation are derived, leading to some partial solution of the risk-sharing problem with multiple [Formula: see text] for general Λ functions. Finally, we discuss the risk-sharing problem with [Formula: see text], another definition of lambda value at risk. We focus on the inf-convolution of [Formula: see text] and a risk measure that is consistent with the second-order stochastic dominance, deriving very different expression of the inf-convolution and the forms of the optimal allocations.
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.