An adaptive data-driven subspace polynomial dimensional decomposition for high-dimensional uncertainty quantification based on maximum entropy method and sparse Bayesian learning

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL Structural Safety Pub Date : 2024-02-20 DOI:10.1016/j.strusafe.2024.102450
Wanxin He , Gang Li , Yan Zeng , Yixuan Wang , Changting Zhong
{"title":"An adaptive data-driven subspace polynomial dimensional decomposition for high-dimensional uncertainty quantification based on maximum entropy method and sparse Bayesian learning","authors":"Wanxin He ,&nbsp;Gang Li ,&nbsp;Yan Zeng ,&nbsp;Yixuan Wang ,&nbsp;Changting Zhong","doi":"10.1016/j.strusafe.2024.102450","DOIUrl":null,"url":null,"abstract":"<div><p>Polynomial dimensional decomposition (PDD) is a surrogate method originated from the ANOVA (analysis of variance) decomposition, and has shown powerful performance in uncertainty quantification (UQ) accuracy and convergence recently. However, complex high-dimensional problems result in a large number of polynomial basis functions, leading to heavy computational burden, and the probability distributions of the input random variables are indispensable for PDD modeling and UQ, which may be unavailable in practical engineering. This study establishes an adaptive data-driven subspace PDD (ADDSPDD) for high-dimensional UQ, which employs two types of data for modeling the PDD basis function and the low-dimensional subspace directly, namely, the data of input random variables and the input-response samples. Firstly, we propose a data-driven zero-entropy criterion-based maximum entropy method for reconstructing the probability density functions (PDF) of input variables. Then, with the aid of the established PDFs, a data-driven subspace PDD (DDSPDD) is proposed based on the whitening transformation. To recover the subspace of the function of interest accurately and efficiently, we put forward an approximate active subspace method (AAS) based on the Taylor expansion under some mild premises. Finally, we integrate an adaptive learning algorithm into the DDSPDD framework based on the sparse Bayesian learning theory, obtaining our ADDSPDD; thus, the real subspace and the significant PDD basis functions can be identified with limited computational budget. We validate the proposed method by using four examples, and systematically compare four existing dimension-reduction methods with the AAS. Results show that the proposed framework is effective and the AAS is a good choice when the corresponding assumptions are satisfied.</p></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"108 ","pages":"Article 102450"},"PeriodicalIF":5.7000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473024000213","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Polynomial dimensional decomposition (PDD) is a surrogate method originated from the ANOVA (analysis of variance) decomposition, and has shown powerful performance in uncertainty quantification (UQ) accuracy and convergence recently. However, complex high-dimensional problems result in a large number of polynomial basis functions, leading to heavy computational burden, and the probability distributions of the input random variables are indispensable for PDD modeling and UQ, which may be unavailable in practical engineering. This study establishes an adaptive data-driven subspace PDD (ADDSPDD) for high-dimensional UQ, which employs two types of data for modeling the PDD basis function and the low-dimensional subspace directly, namely, the data of input random variables and the input-response samples. Firstly, we propose a data-driven zero-entropy criterion-based maximum entropy method for reconstructing the probability density functions (PDF) of input variables. Then, with the aid of the established PDFs, a data-driven subspace PDD (DDSPDD) is proposed based on the whitening transformation. To recover the subspace of the function of interest accurately and efficiently, we put forward an approximate active subspace method (AAS) based on the Taylor expansion under some mild premises. Finally, we integrate an adaptive learning algorithm into the DDSPDD framework based on the sparse Bayesian learning theory, obtaining our ADDSPDD; thus, the real subspace and the significant PDD basis functions can be identified with limited computational budget. We validate the proposed method by using four examples, and systematically compare four existing dimension-reduction methods with the AAS. Results show that the proposed framework is effective and the AAS is a good choice when the corresponding assumptions are satisfied.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最大熵方法和稀疏贝叶斯学习的高维不确定性量化的自适应数据驱动子空间多项式维分解法
多项式维分解(PDD)是一种源于方差分析(ANOVA)分解的替代方法,近年来在不确定性量化(UQ)精度和收敛性方面表现出了强大的性能。然而,复杂的高维问题会产生大量多项式基函数,导致计算负担沉重,而且输入随机变量的概率分布是 PDD 建模和 UQ 不可或缺的条件,在实际工程中可能无法获得。本研究建立了一种用于高维 UQ 的自适应数据驱动子空间 PDD(ADDSPDD),它直接采用两类数据对 PDD 基函数和低维子空间进行建模,即输入随机变量数据和输入-响应样本数据。首先,我们提出了一种基于零熵准则的数据驱动最大熵方法,用于重建输入变量的概率密度函数(PDF)。然后,借助已建立的概率密度函数,提出一种基于白化变换的数据驱动子空间 PDD(DDSPDD)。为了准确有效地恢复感兴趣函数的子空间,我们在一些温和的前提下提出了一种基于泰勒展开的近似主动子空间方法(AAS)。最后,我们将基于稀疏贝叶斯学习理论的自适应学习算法集成到 DDSPDD 框架中,得到了我们的 ADDSPDD;因此,可以在有限的计算预算内识别真实子空间和重要的 PDD 基函数。我们通过四个例子验证了所提出的方法,并将现有的四种降维方法与 AAS 进行了系统比较。结果表明,所提出的框架是有效的,在满足相应假设的情况下,AAS 是一个很好的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Structural Safety
Structural Safety 工程技术-工程:土木
CiteScore
11.30
自引率
8.60%
发文量
67
审稿时长
53 days
期刊介绍: Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment
期刊最新文献
Reliability analysis for data-driven noisy models using active learning An Adaptive Gaussian Mixture Model for structural reliability analysis using convolution search technique The generalized first-passage probability considering temporal correlation and its application in dynamic reliability analysis A stratified beta-sphere sampling method combined with important sampling and active learning for rare event analysis A novel deterministic sampling approach for the reliability analysis of high-dimensional structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1