Pareto-optimal front generation for the bi-objective JIT scheduling problems with a piecewise linear trade-off between objectives

IF 3.7 4区 管理学 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Operations Research Perspectives Pub Date : 2024-02-17 DOI:10.1016/j.orp.2024.100299
Sona Babu, B.S. Girish
{"title":"Pareto-optimal front generation for the bi-objective JIT scheduling problems with a piecewise linear trade-off between objectives","authors":"Sona Babu,&nbsp;B.S. Girish","doi":"10.1016/j.orp.2024.100299","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a novel method of Pareto front generation from a set of piecewise linear trade-off curves typically encountered in bi-objective just-in-time (JIT) scheduling problems. We have considered the simultaneous minimization of total weighted earliness and tardiness (TWET) and total flowtime (TFT) objectives in a single-machine scheduling problem (SMSP) with distinct job due dates allowing inserted idle times in the schedules. An optimal timing algorithm (OTA) is presented to generate the trade-off curve between TWET and TFT for a given sequence of jobs. The proposed method of Pareto front generation generates a Pareto-optimal front constituted of both line segments and points. Further, we employ a simple local search method to generate sequences of jobs and their respective trade-off curves, which are trimmed and merged to generate the Pareto-optimal front using the proposed method. Computational results obtained using problem instances of different sizes reveal the efficiency of the proposed OTA and the Pareto front generation method over the state-of-the-art methodologies adopted from the literature.</p></div>","PeriodicalId":38055,"journal":{"name":"Operations Research Perspectives","volume":"12 ","pages":"Article 100299"},"PeriodicalIF":3.7000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214716024000034/pdfft?md5=5b11514fe1b1cb59cc8b7fbe08ee9aed&pid=1-s2.0-S2214716024000034-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214716024000034","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel method of Pareto front generation from a set of piecewise linear trade-off curves typically encountered in bi-objective just-in-time (JIT) scheduling problems. We have considered the simultaneous minimization of total weighted earliness and tardiness (TWET) and total flowtime (TFT) objectives in a single-machine scheduling problem (SMSP) with distinct job due dates allowing inserted idle times in the schedules. An optimal timing algorithm (OTA) is presented to generate the trade-off curve between TWET and TFT for a given sequence of jobs. The proposed method of Pareto front generation generates a Pareto-optimal front constituted of both line segments and points. Further, we employ a simple local search method to generate sequences of jobs and their respective trade-off curves, which are trimmed and merged to generate the Pareto-optimal front using the proposed method. Computational results obtained using problem instances of different sizes reveal the efficiency of the proposed OTA and the Pareto front generation method over the state-of-the-art methodologies adopted from the literature.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双目标 JIT 调度问题的帕累托最优前沿生成,目标之间存在片断线性权衡
本文提出了一种新方法,即从双目标及时调度(JIT)问题中通常会遇到的一组片断线性权衡曲线中生成帕累托前沿。我们考虑了在单机调度问题(SMSP)中同时最小化总加权提前和延迟(TWET)目标和总流动时间(TFT)目标的问题,该问题具有不同的作业到期日,允许在调度中插入空闲时间。本文提出了一种最佳时间算法 (OTA),用于生成给定作业序列中 TWET 和 TFT 之间的权衡曲线。所提出的帕累托前沿生成方法可生成由线段和点构成的帕累托最优前沿。此外,我们还采用了一种简单的局部搜索方法来生成工作序列及其各自的权衡曲线,并利用所提出的方法对这些曲线进行修剪和合并,从而生成帕累托最优前沿。利用不同大小的问题实例获得的计算结果显示,与文献中采用的最先进方法相比,建议的 OTA 和帕累托前沿生成方法非常高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Operations Research Perspectives
Operations Research Perspectives Mathematics-Statistics and Probability
CiteScore
6.40
自引率
0.00%
发文量
36
审稿时长
27 days
期刊最新文献
Integrated order acceptance and inventory policy optimization in a multi-period, multi-product hybrid production system Distributional robustness based on Wasserstein-metric approach for humanitarian logistics problem under road disruptions A generalized behavioral-based goal programming approach for decision-making under imprecision δ-perturbation of bilevel optimization problems: An error bound analysis Competitive pricing and seed node selection in a two-echelon supply chain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1