{"title":"Antibacterial Activity of Oxadiazole-Montmorillonite Composites","authors":"Nora Ouis, Samia Benhammadi, Souad Larjem","doi":"10.1134/S1990750823600255","DOIUrl":null,"url":null,"abstract":"<p>Resistance of bacteria to antibiotics is a serious human concern since it affects medical treatments performance against bacterial infections. Within the scope of new robust antibiotics development, we propose a heterocyclic–clay composite material. It consists of the association of 5-(2 pyridyl)-1-3-4-oxadiazoles-2-thione with pre-treated montmorillonite (MMT). Different pre-treatments were considered including acidification (H<sup>+</sup>-MMT) and intercalation with polar polymers facilitating the antibacterial composite material synthesis. The different composite materials that vary in terms of oxadiazole concentration were characterized in terms of structure (molecular, crystalline) using FTIR and XRD, and antibacterial properties. The obtained results showed successful intercalation of polar polymeric materials within acidified montmorillonite clay. The final composite material showed very promising antibacterial properties with reference to two well established antibiotics i.e., Penicillin and Spiramycine. The highest performance was observed for the composite containing polyvinyl alcohol intercalating the acidified montmorillonite with 50 wt % of 1,3,4-oxadiazole compound.</p>","PeriodicalId":485,"journal":{"name":"Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry","volume":"17 3","pages":"136 - 144"},"PeriodicalIF":0.6000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990750823600255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Resistance of bacteria to antibiotics is a serious human concern since it affects medical treatments performance against bacterial infections. Within the scope of new robust antibiotics development, we propose a heterocyclic–clay composite material. It consists of the association of 5-(2 pyridyl)-1-3-4-oxadiazoles-2-thione with pre-treated montmorillonite (MMT). Different pre-treatments were considered including acidification (H+-MMT) and intercalation with polar polymers facilitating the antibacterial composite material synthesis. The different composite materials that vary in terms of oxadiazole concentration were characterized in terms of structure (molecular, crystalline) using FTIR and XRD, and antibacterial properties. The obtained results showed successful intercalation of polar polymeric materials within acidified montmorillonite clay. The final composite material showed very promising antibacterial properties with reference to two well established antibiotics i.e., Penicillin and Spiramycine. The highest performance was observed for the composite containing polyvinyl alcohol intercalating the acidified montmorillonite with 50 wt % of 1,3,4-oxadiazole compound.
期刊介绍:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry covers all major aspects of biomedical chemistry and related areas, including proteomics and molecular biology of (patho)physiological processes, biochemistry, neurochemistry, immunochemistry and clinical chemistry, bioinformatics, gene therapy, drug design and delivery, biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine. The journal also publishes review articles. All issues of the journal usually contain solicited reviews.