Saeed Javanmardi , Georgia Sakellari , Mohammad Shojafar , Antonio Caruso
{"title":"Why it does not work? Metaheuristic task allocation approaches in Fog-enabled Internet of Drones","authors":"Saeed Javanmardi , Georgia Sakellari , Mohammad Shojafar , Antonio Caruso","doi":"10.1016/j.simpat.2024.102913","DOIUrl":null,"url":null,"abstract":"<div><p>Several scenarios that use the Internet of Drones (IoD) networks require a Fog paradigm, where the Fog devices, provide time-sensitive functionality such as task allocation, scheduling, and resource optimization. The problem of efficient task allocation/scheduling is critical for optimizing Fog-enabled Internet of Drones performance. In recent years, many articles have employed meta-heuristic approaches for task scheduling/allocation in Fog-enabled IoT-based scenarios, focusing on network usage and delay, but neglecting execution time. While promising in the academic area, metaheuristic have many limitations in real-time environments due to their high execution time, resource-intensive nature, increased time complexity, and inherent uncertainty in achieving optimal solutions, as supported by empirical studies, case studies, and benchmarking data. We propose a task allocation method named F-DTA that is used as the fitness function of two metaheuristic approaches: Particle Swarm Optimization (PSO) and The Krill Herd Algorithm (KHA). We compare our proposed method by simulation using the iFogSim2 simulator, keeping all the settings the same for a fair evaluation and only focus on the execution time. The results confirm its superior performance in execution time, compared to the metaheuristics.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"133 ","pages":"Article 102913"},"PeriodicalIF":3.5000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569190X24000273/pdfft?md5=4a684cbf1f3922d096dcb3ab0bd3aefb&pid=1-s2.0-S1569190X24000273-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24000273","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Several scenarios that use the Internet of Drones (IoD) networks require a Fog paradigm, where the Fog devices, provide time-sensitive functionality such as task allocation, scheduling, and resource optimization. The problem of efficient task allocation/scheduling is critical for optimizing Fog-enabled Internet of Drones performance. In recent years, many articles have employed meta-heuristic approaches for task scheduling/allocation in Fog-enabled IoT-based scenarios, focusing on network usage and delay, but neglecting execution time. While promising in the academic area, metaheuristic have many limitations in real-time environments due to their high execution time, resource-intensive nature, increased time complexity, and inherent uncertainty in achieving optimal solutions, as supported by empirical studies, case studies, and benchmarking data. We propose a task allocation method named F-DTA that is used as the fitness function of two metaheuristic approaches: Particle Swarm Optimization (PSO) and The Krill Herd Algorithm (KHA). We compare our proposed method by simulation using the iFogSim2 simulator, keeping all the settings the same for a fair evaluation and only focus on the execution time. The results confirm its superior performance in execution time, compared to the metaheuristics.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.