Zhi-Fu Gao, Ci-Xing Chen, Na Wang, Xin-Jun Zhao, Zhao-Jun Wang
{"title":"Dirac spinor scattering states with positive-energy in rotating spheroid models","authors":"Zhi-Fu Gao, Ci-Xing Chen, Na Wang, Xin-Jun Zhao, Zhao-Jun Wang","doi":"10.1002/asna.20240012","DOIUrl":null,"url":null,"abstract":"<p>There are many rotating spheroids in the universe, and many astronomers and physicists have used theoretical methods to study the characteristics of stellar gravity since Newton's time. This paper derives the solutions of eight scattering states <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>ϕ</mi>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>ϕ</mi>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>ϕ</mi>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ \\Big({\\phi}^{(0)},{\\chi}^{(0)},{\\phi}^{(1)},{\\chi}^{(1)},{\\phi}^{(2)} $$</annotation>\n </semantics></math>,<math>\n <semantics>\n <mrow>\n <msup>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>ϕ</mi>\n <mrow>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\chi}^{(2)},{\\phi}^{(3)} $$</annotation>\n </semantics></math>, and<math>\n <semantics>\n <mrow>\n <msup>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {\\chi}^{(3)}\\Big) $$</annotation>\n </semantics></math> for the Dirac equation with positive-energy <math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>=</mo>\n <mi>im</mi>\n </mrow>\n <annotation>$$ E= im $$</annotation>\n </semantics></math>, and establishes the relationship between the differential scattering cross section <math>\n <semantics>\n <mrow>\n <msub>\n <mi>σ</mi>\n <mi>i</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>,</mo>\n <mi>φ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ {\\sigma}_i\\left(p,\\theta, \\varphi \\right) $$</annotation>\n </semantics></math> and the stellar density <math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\mu $$</annotation>\n </semantics></math>. It is found that: (1) For the eight scattering states, their average scattering cross-sections <math>\n <semantics>\n <mrow>\n <mover>\n <msub>\n <mi>σ</mi>\n <mi>i</mi>\n </msub>\n <mo>‾</mo>\n </mover>\n </mrow>\n <annotation>$$ \\overline{\\sigma_i} $$</annotation>\n </semantics></math> are proportional to <math>\n <semantics>\n <mrow>\n <msup>\n <mi>μ</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$$ {\\mu}^2 $$</annotation>\n </semantics></math>, and depend on the star's radius, and the higher the stellar density <math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\mu $$</annotation>\n </semantics></math>, the greater the sensitivity of <math>\n <semantics>\n <mrow>\n <mover>\n <mrow>\n <mi>σ</mi>\n <mi>i</mi>\n </mrow>\n <mo>‾</mo>\n </mover>\n </mrow>\n <annotation>$$ \\overline{\\sigma i} $$</annotation>\n </semantics></math> to the change of <math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\mu $$</annotation>\n </semantics></math>; (2) For the four scattering states <math>\n <semantics>\n <mrow>\n <msup>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <mi>i</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>i</mi>\n <mo>=</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$$ {\\chi}^{(i)},i=0,1,2,3 $$</annotation>\n </semantics></math>, their average scattering amplitudes <math>\n <semantics>\n <mrow>\n <mover>\n <mi>f</mi>\n <mo>‾</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ \\overline{f}\\left(p,\\theta \\right) $$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mover>\n <mi>σ</mi>\n <mo>‾</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ \\overline{\\sigma}\\left(p,\\theta \\right) $$</annotation>\n </semantics></math> depend on the mass <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation>$$ m $$</annotation>\n </semantics></math> of the particles; while for the other four scattering states <math>\n <semantics>\n <mrow>\n <msup>\n <mi>ϕ</mi>\n <mrow>\n <mo>(</mo>\n <mi>i</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\phi}^{(i)} $$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>i</mi>\n <mo>=</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$$ i=0,1,2,3 $$</annotation>\n </semantics></math>, then <math>\n <semantics>\n <mrow>\n <mover>\n <mi>f</mi>\n <mo>‾</mo>\n </mover>\n </mrow>\n <annotation>$$ \\overline{f} $$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mover>\n <mi>σ</mi>\n <mo>‾</mo>\n </mover>\n </mrow>\n <annotation>$$ \\overline{\\sigma} $$</annotation>\n </semantics></math> are independent of <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation>$$ m $$</annotation>\n </semantics></math>. This study links the gravitational characteristics of stars with the scattering cross section, creating a new method for studying the gravitational characteristics, which helps to reveal the mystery of the gravity of rotating ellipsoidal stars.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 2-3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20240012","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
There are many rotating spheroids in the universe, and many astronomers and physicists have used theoretical methods to study the characteristics of stellar gravity since Newton's time. This paper derives the solutions of eight scattering states ,, and for the Dirac equation with positive-energy , and establishes the relationship between the differential scattering cross section and the stellar density . It is found that: (1) For the eight scattering states, their average scattering cross-sections are proportional to , and depend on the star's radius, and the higher the stellar density , the greater the sensitivity of to the change of ; (2) For the four scattering states , their average scattering amplitudes and depend on the mass of the particles; while for the other four scattering states , , then and are independent of . This study links the gravitational characteristics of stars with the scattering cross section, creating a new method for studying the gravitational characteristics, which helps to reveal the mystery of the gravity of rotating ellipsoidal stars.
期刊介绍:
Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.