Systematic elucidation of independently modulated genes in Lactiplantibacillus plantarum reveals a trade-off between secondary and primary metabolism

IF 5.7 2区 生物学 Microbial Biotechnology Pub Date : 2024-02-23 DOI:10.1111/1751-7915.14425
Sizhe Qiu, Yidi Huang, Shishun Liang, Hong Zeng, Aidong Yang
{"title":"Systematic elucidation of independently modulated genes in Lactiplantibacillus plantarum reveals a trade-off between secondary and primary metabolism","authors":"Sizhe Qiu,&nbsp;Yidi Huang,&nbsp;Shishun Liang,&nbsp;Hong Zeng,&nbsp;Aidong Yang","doi":"10.1111/1751-7915.14425","DOIUrl":null,"url":null,"abstract":"<p><i>Lactiplantibacillus plantarum</i> is a probiotic bacterium widely used in food and health industries, but its gene regulatory information is limited in existing databases, which impedes the research of its physiology and its applications. To obtain a better understanding of the transcriptional regulatory network of <i>L. plantarum</i>, independent component analysis of its transcriptomes was used to derive 45 sets of independently modulated genes (iModulons). Those iModulons were annotated for associated transcription factors and functional pathways, and active iModulons in response to different growth conditions were identified and characterized in detail. Eventually, the analysis of iModulon activities reveals a trade-off between regulatory activities of secondary and primary metabolism in <i>L. plantarum</i>.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.14425","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14425","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lactiplantibacillus plantarum is a probiotic bacterium widely used in food and health industries, but its gene regulatory information is limited in existing databases, which impedes the research of its physiology and its applications. To obtain a better understanding of the transcriptional regulatory network of L. plantarum, independent component analysis of its transcriptomes was used to derive 45 sets of independently modulated genes (iModulons). Those iModulons were annotated for associated transcription factors and functional pathways, and active iModulons in response to different growth conditions were identified and characterized in detail. Eventually, the analysis of iModulon activities reveals a trade-off between regulatory activities of secondary and primary metabolism in L. plantarum.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对植物乳杆菌中独立调节基因的系统阐释揭示了次级代谢和初级代谢之间的权衡。
植物乳杆菌(Lactiplantibacillus plantarum)是一种被广泛应用于食品和健康产业的益生菌,但其基因调控信息在现有数据库中非常有限,这阻碍了对其生理学及其应用的研究。为了更好地了解植物乳杆菌的转录调控网络,研究人员对其转录组进行了独立成分分析,得出了 45 组独立调控基因(iModulons)。对这些 iModulons 进行了相关转录因子和功能通路的注释,并详细鉴定和描述了在不同生长条件下活跃的 iModulons。最终,对 iModulon 活动的分析揭示了植物乳杆菌次级代谢和初级代谢调控活动之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
期刊最新文献
Advances in Aureobasidium research: Paving the path to industrial utilization. Burning question: Rethinking organohalide degradation strategy for bioremediation applications. Exploring the secrets of marine microorganisms: Unveiling secondary metabolites through metagenomics. Establishing a straightforward I-SceI-mediated recombination one-plasmid system for efficient genome editing in P. putida KT2440 Design, construction and optimization of formaldehyde growth biosensors with broad application in biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1