{"title":"Chitosan as a promising materials for the construction of nanocarriers for diabetic retinopathy: an updated review.","authors":"Yan Lv, Chenglei Zhai, Gang Sun, Yangfang He","doi":"10.1186/s13036-024-00414-7","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic retinopathy (DR) is a condition that causes swelling of the blood vessels of the retina and leaks blood and fluids. It is the most severe form of diabetic eye disease. It causes vision loss in its advanced stage. Diabetic retinopathy is responsible for causing 26% of blindness. Very insufficient therapies are accessible for the treatment of DR. As compared to the conventional therapies, there should be enhanced research on the controlled release, shorter duration, and cost-effective therapy of diabetic retinopathy. The expansion of advanced nanocarriers-based drug delivery systems has been now employed to exploit as well as regulate the transport of many therapeutic agents to target sites via the increase in penetration or the extension of the duration of contact employing production by enclosing as well as distributing tiny molecules in nanostructured formulation. Various polymers have been utilized for the manufacturing of these nanostructured formulations. Chitosan possesses incredible biological and chemical properties, that have led to its extensive use in pharmaceutical and biomedical applications. Chitosan has been used in many studies because of its enhanced mucoadhesiveness and non-toxicity. Multiple studies have used chitosan as the best candidate for manufacturing nanocarriers and treating diabetic retinopathy. Numerous nanocarriers have been formulated by using chitosan such as nanostructured lipid carriers, solid lipid nanoparticles, liposomes, and dendrimers for treating diabetic retinopathy. This current review elaborates on the recent advancements of chitosan as a promising approach for the manufacturing of nanocarriers that can be used for treating diabetic retinopathy.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"18 1","pages":"18"},"PeriodicalIF":5.7000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10885467/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-024-00414-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic retinopathy (DR) is a condition that causes swelling of the blood vessels of the retina and leaks blood and fluids. It is the most severe form of diabetic eye disease. It causes vision loss in its advanced stage. Diabetic retinopathy is responsible for causing 26% of blindness. Very insufficient therapies are accessible for the treatment of DR. As compared to the conventional therapies, there should be enhanced research on the controlled release, shorter duration, and cost-effective therapy of diabetic retinopathy. The expansion of advanced nanocarriers-based drug delivery systems has been now employed to exploit as well as regulate the transport of many therapeutic agents to target sites via the increase in penetration or the extension of the duration of contact employing production by enclosing as well as distributing tiny molecules in nanostructured formulation. Various polymers have been utilized for the manufacturing of these nanostructured formulations. Chitosan possesses incredible biological and chemical properties, that have led to its extensive use in pharmaceutical and biomedical applications. Chitosan has been used in many studies because of its enhanced mucoadhesiveness and non-toxicity. Multiple studies have used chitosan as the best candidate for manufacturing nanocarriers and treating diabetic retinopathy. Numerous nanocarriers have been formulated by using chitosan such as nanostructured lipid carriers, solid lipid nanoparticles, liposomes, and dendrimers for treating diabetic retinopathy. This current review elaborates on the recent advancements of chitosan as a promising approach for the manufacturing of nanocarriers that can be used for treating diabetic retinopathy.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.