{"title":"Report of Citrus tristeza virus in Diaphorina citri (Hemiotera: Liviidae) insects of different sexes, color morphs, and developmental stages.","authors":"Jingtian Zhang, Yuxin Xiao, Panpan Hu, Longtong Chen, Xiaoling Deng, Meirong Xu","doi":"10.1093/jisesa/ieae014","DOIUrl":null,"url":null,"abstract":"<p><p>Diaphorina citri, also known as the Asian citrus psyllid, is the main vector of 'Candidatus Liberibacter asiaticus' (CLas) associated with citrus Huanglongbing. It has been reported that D. citri could also be infected by Citrus tristeza virus (CTV), a virus that has been previously reported to be vectored by certain aphid species. In this study, the CTV and CLas profiles in different organs, color variants, developmental stages, or sexes of D. citri insects were analyzed. Although no significant differences were found between nymphs and adults in CTV titers, we found that the third instar nymph of D. citri was more efficient in CTV and CLas acquisition compared to the fourth and fifth instars and adults. With the instars of D. citri development, the relationship between the acquiring of CTV and CLas by D. citri seemed to follow an inverse trend, with the titer of CLas increased and the titer of CTV decreased. No significant differences were observed between the 2 sexes of D. citri in acquiring either CTV or CLas titers in the field. However, no differences were drawn among the 3 color morph variants for CTV titers. CTV titers in the midguts of adult D. citri were significantly higher than those in the salivary glands. Both CTV-positive incidence and CTV titers in the midguts of adult D. citri increased with increasing exposure periods. This study provides new data to deepen our understanding of the CTV-involved interaction between D. citri and CLas.</p>","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":"24 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883710/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/ieae014","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diaphorina citri, also known as the Asian citrus psyllid, is the main vector of 'Candidatus Liberibacter asiaticus' (CLas) associated with citrus Huanglongbing. It has been reported that D. citri could also be infected by Citrus tristeza virus (CTV), a virus that has been previously reported to be vectored by certain aphid species. In this study, the CTV and CLas profiles in different organs, color variants, developmental stages, or sexes of D. citri insects were analyzed. Although no significant differences were found between nymphs and adults in CTV titers, we found that the third instar nymph of D. citri was more efficient in CTV and CLas acquisition compared to the fourth and fifth instars and adults. With the instars of D. citri development, the relationship between the acquiring of CTV and CLas by D. citri seemed to follow an inverse trend, with the titer of CLas increased and the titer of CTV decreased. No significant differences were observed between the 2 sexes of D. citri in acquiring either CTV or CLas titers in the field. However, no differences were drawn among the 3 color morph variants for CTV titers. CTV titers in the midguts of adult D. citri were significantly higher than those in the salivary glands. Both CTV-positive incidence and CTV titers in the midguts of adult D. citri increased with increasing exposure periods. This study provides new data to deepen our understanding of the CTV-involved interaction between D. citri and CLas.
期刊介绍:
The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.