NeuroIGN: Explainable Multimodal Image-Guided System for Precise Brain Tumor Surgery.

IF 3.5 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Journal of Medical Systems Pub Date : 2024-02-23 DOI:10.1007/s10916-024-02037-3
Ramy A Zeineldin, Mohamed E Karar, Oliver Burgert, Franziska Mathis-Ullrich
{"title":"NeuroIGN: Explainable Multimodal Image-Guided System for Precise Brain Tumor Surgery.","authors":"Ramy A Zeineldin, Mohamed E Karar, Oliver Burgert, Franziska Mathis-Ullrich","doi":"10.1007/s10916-024-02037-3","DOIUrl":null,"url":null,"abstract":"<p><p>Precise neurosurgical guidance is critical for successful brain surgeries and plays a vital role in all phases of image-guided neurosurgery (IGN). Neuronavigation software enables real-time tracking of surgical tools, ensuring their presentation with high precision in relation to a virtual patient model. Therefore, this work focuses on the development of a novel multimodal IGN system, leveraging deep learning and explainable AI to enhance brain tumor surgery outcomes. The study establishes the clinical and technical requirements of the system for brain tumor surgeries. NeuroIGN adopts a modular architecture, including brain tumor segmentation, patient registration, and explainable output prediction, and integrates open-source packages into an interactive neuronavigational display. The NeuroIGN system components underwent validation and evaluation in both laboratory and simulated operating room (OR) settings. Experimental results demonstrated its accuracy in tumor segmentation and the success of ExplainAI in increasing the trust of medical professionals in deep learning. The proposed system was successfully assembled and set up within 11 min in a pre-clinical OR setting with a tracking accuracy of 0.5 (± 0.1) mm. NeuroIGN was also evaluated as highly useful, with a high frame rate (19 FPS) and real-time ultrasound imaging capabilities. In conclusion, this paper describes not only the development of an open-source multimodal IGN system but also demonstrates the innovative application of deep learning and explainable AI algorithms in enhancing neuronavigation for brain tumor surgeries. By seamlessly integrating pre- and intra-operative patient image data with cutting-edge interventional devices, our experiments underscore the potential for deep learning models to improve the surgical treatment of brain tumors and long-term post-operative outcomes.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"48 1","pages":"25"},"PeriodicalIF":3.5000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-024-02037-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Precise neurosurgical guidance is critical for successful brain surgeries and plays a vital role in all phases of image-guided neurosurgery (IGN). Neuronavigation software enables real-time tracking of surgical tools, ensuring their presentation with high precision in relation to a virtual patient model. Therefore, this work focuses on the development of a novel multimodal IGN system, leveraging deep learning and explainable AI to enhance brain tumor surgery outcomes. The study establishes the clinical and technical requirements of the system for brain tumor surgeries. NeuroIGN adopts a modular architecture, including brain tumor segmentation, patient registration, and explainable output prediction, and integrates open-source packages into an interactive neuronavigational display. The NeuroIGN system components underwent validation and evaluation in both laboratory and simulated operating room (OR) settings. Experimental results demonstrated its accuracy in tumor segmentation and the success of ExplainAI in increasing the trust of medical professionals in deep learning. The proposed system was successfully assembled and set up within 11 min in a pre-clinical OR setting with a tracking accuracy of 0.5 (± 0.1) mm. NeuroIGN was also evaluated as highly useful, with a high frame rate (19 FPS) and real-time ultrasound imaging capabilities. In conclusion, this paper describes not only the development of an open-source multimodal IGN system but also demonstrates the innovative application of deep learning and explainable AI algorithms in enhancing neuronavigation for brain tumor surgeries. By seamlessly integrating pre- and intra-operative patient image data with cutting-edge interventional devices, our experiments underscore the potential for deep learning models to improve the surgical treatment of brain tumors and long-term post-operative outcomes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NeuroIGN:用于精确脑肿瘤手术的可解释多模态图像引导系统。
精确的神经外科引导是脑外科手术成功的关键,在图像引导神经外科手术(IGN)的各个阶段都起着至关重要的作用。神经导航软件可实现手术工具的实时跟踪,确保手术工具高精度地呈现在虚拟病人模型上。因此,这项工作的重点是开发一种新型多模态 IGN 系统,利用深度学习和可解释的人工智能来提高脑肿瘤手术的效果。研究确定了该系统在脑肿瘤手术中的临床和技术要求。NeuroIGN采用模块化架构,包括脑肿瘤分割、患者注册和可解释输出预测,并将开源软件包集成到交互式神经导航显示器中。NeuroIGN系统组件在实验室和模拟手术室(OR)环境中进行了验证和评估。实验结果证明了该系统在肿瘤分割方面的准确性,以及ExplainAI在提高医疗专业人员对深度学习的信任度方面所取得的成功。在临床前手术室环境中,该系统在 11 分钟内成功组装和设置,跟踪精度为 0.5 (± 0.1) 毫米。NeuroIGN 还被评估为非常有用,具有高帧率(19 FPS)和实时超声成像功能。总之,本文不仅介绍了开源多模态 IGN 系统的开发,还展示了深度学习和可解释人工智能算法在增强脑肿瘤手术神经导航方面的创新应用。通过将术前和术后患者图像数据与尖端介入设备无缝集成,我们的实验强调了深度学习模型在改善脑肿瘤手术治疗和术后长期疗效方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medical Systems
Journal of Medical Systems 医学-卫生保健
CiteScore
11.60
自引率
1.90%
发文量
83
审稿时长
4.8 months
期刊介绍: Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.
期刊最新文献
Garbage In, Garbage Out? Negative Impact of Physiological Waveform Artifacts in a Hospital Clinical Data Warehouse. 21st Century Cures Act and Information Blocking: How Have Different Specialties Responded? Self-Supervised Learning for Near-Wild Cognitive Workload Estimation. Electronic Health Records Sharing Based on Consortium Blockchain. Large Language Models in Healthcare: An Urgent Call for Ongoing, Rigorous Validation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1