[Reliability Thermal Design, Simulation and Experimental Verification of Electronic Monitoring Unit for Magnetic Resonance System].

Tingwei Liu, Cunli Zhang, Yahong Wang, Huaiyu Dong, Yuehan Jin
{"title":"[Reliability Thermal Design, Simulation and Experimental Verification of Electronic Monitoring Unit for Magnetic Resonance System].","authors":"Tingwei Liu, Cunli Zhang, Yahong Wang, Huaiyu Dong, Yuehan Jin","doi":"10.3969/j.issn.1671-7104.230337","DOIUrl":null,"url":null,"abstract":"<p><p>The monitoring unit used in the nuclear magnetic resonance system, as an important unit of the system, faces a high thermal risk during its entire life cycle. This paper ensures the high efficiency and reliability of the thermal design of the product module from the two dimensions of structural design and device derating design. In order to reduce the risk of thermal design of electronic modules and comprehensively verify the effectiveness of thermal design of electronic modules, the design verification is carried out by combining simulation and experiment. In the simulation process, by establishing a thermal simulation model at the circuit board level, the crustal temperature of the core device is numerically calculated, and the index is compared with the thermal design index value and the test value, on the one hand, to verify the correctness of the simulation model. On the other hand, the validity of thermal design is verified. In the testing process, a thermal test platform for product modules is built, and the thermal characteristics test values of the core components of the module under extreme electrical conditions are obtained, and the corresponding conversion methods are used to predict the thermal performance and thermal design margin of the product at different altitudes. The results show that the electronic module can meet the thermal design requirements in terms of structural design and derating design of core components, and can ensure that the product module can work safely and reliably during the entire life cycle of the NMR system.</p>","PeriodicalId":52535,"journal":{"name":"中国医疗器械杂志","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国医疗器械杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3969/j.issn.1671-7104.230337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The monitoring unit used in the nuclear magnetic resonance system, as an important unit of the system, faces a high thermal risk during its entire life cycle. This paper ensures the high efficiency and reliability of the thermal design of the product module from the two dimensions of structural design and device derating design. In order to reduce the risk of thermal design of electronic modules and comprehensively verify the effectiveness of thermal design of electronic modules, the design verification is carried out by combining simulation and experiment. In the simulation process, by establishing a thermal simulation model at the circuit board level, the crustal temperature of the core device is numerically calculated, and the index is compared with the thermal design index value and the test value, on the one hand, to verify the correctness of the simulation model. On the other hand, the validity of thermal design is verified. In the testing process, a thermal test platform for product modules is built, and the thermal characteristics test values of the core components of the module under extreme electrical conditions are obtained, and the corresponding conversion methods are used to predict the thermal performance and thermal design margin of the product at different altitudes. The results show that the electronic module can meet the thermal design requirements in terms of structural design and derating design of core components, and can ensure that the product module can work safely and reliably during the entire life cycle of the NMR system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[磁共振系统电子监控装置的可靠性热设计、模拟和实验验证]。
核磁共振系统中使用的监测单元作为系统的重要单元,在其整个生命周期内都面临着较高的热风险。本文从结构设计和器件降额设计两个维度确保产品模块热设计的高效性和可靠性。为了降低电子模块热设计的风险,全面验证电子模块热设计的有效性,本文采用仿真与实验相结合的方法进行设计验证。在仿真过程中,通过建立电路板级的热仿真模型,对核心器件的外壳温度进行数值计算,并将该指标与热设计指标值和测试值进行对比,一方面验证仿真模型的正确性。另一方面,验证热设计的正确性。在测试过程中,搭建了产品模块热测试平台,获得了模块核心部件在极端电气条件下的热特性测试值,并采用相应的换算方法预测了产品在不同海拔高度下的热性能和热设计余量。结果表明,电子模块在结构设计和核心部件降额设计方面均能满足热设计要求,可确保产品模块在核磁共振系统的整个生命周期内安全可靠地工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
中国医疗器械杂志
中国医疗器械杂志 Medicine-Medicine (all)
CiteScore
0.40
自引率
0.00%
发文量
8086
期刊介绍:
期刊最新文献
[12-Lead Holter Integrated with Sleep Monitoring Module]. [Bowel Sounds Detection Method Based on ResNet-BiLSTM and Attention Mechanism]. [Clinical Application of Equivalent Uniform Dose in Intensity-Modulated Rotational Radiotherapy Based on Eclipse TPS]. [Clinical Validation of a Prototype Smart Non-Invasive Pregnancy Glucose Monitor]. [Clinical Validation Study of Deep Learning-Generated Magnetic Resonance Images].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1