Evaluating OpenAI's Whisper ASR: Performance analysis across diverse accents and speaker traits.

IF 1.2 Q3 ACOUSTICS JASA express letters Pub Date : 2024-02-01 DOI:10.1121/10.0024876
Calbert Graham, Nathan Roll
{"title":"Evaluating OpenAI's Whisper ASR: Performance analysis across diverse accents and speaker traits.","authors":"Calbert Graham, Nathan Roll","doi":"10.1121/10.0024876","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates Whisper's automatic speech recognition (ASR) system performance across diverse native and non-native English accents. Results reveal superior recognition in American compared to British and Australian English accents with similar performance in Canadian English. Overall, native English accents demonstrate higher accuracy than non-native accents. Exploring connections between speaker traits [sex, native language (L1) typology, and second language (L2) proficiency] and word error rate uncovers notable associations. Furthermore, Whisper exhibits enhanced performance in read speech over conversational speech with modifications based on speaker gender. The implications of these findings are discussed.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0024876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates Whisper's automatic speech recognition (ASR) system performance across diverse native and non-native English accents. Results reveal superior recognition in American compared to British and Australian English accents with similar performance in Canadian English. Overall, native English accents demonstrate higher accuracy than non-native accents. Exploring connections between speaker traits [sex, native language (L1) typology, and second language (L2) proficiency] and word error rate uncovers notable associations. Furthermore, Whisper exhibits enhanced performance in read speech over conversational speech with modifications based on speaker gender. The implications of these findings are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估 OpenAI 的耳语 ASR:不同口音和说话者特征的性能分析。
本研究调查了 Whisper 的自动语音识别(ASR)系统在不同母语和非母语英语口音中的表现。结果显示,与英式英语和澳大利亚英语口音相比,美式英语口音的识别率更高,而加拿大英语口音的识别率与之相近。总体而言,英语母语口音的准确率高于非母语口音。探索说话者特征(性别、母语(L1)类型和第二语言(L2)熟练程度)与单词错误率之间的联系发现了显著的关联。此外,根据说话者的性别,Whisper 在阅读语音中的表现要优于会话语音。本文讨论了这些发现的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
The JIBO Kids Corpus: A speech dataset of child-robot interactions in a classroom environment. The perceptual distinctiveness of the [n-l] contrast in different vowel and tonal contexts. Ambient noise source characterization using spectral, coherence, and directionality estimates at Kongsfjorden. Speaker adaptation using codebook integrated deep neural networks for speech enhancement. Fundamental frequency predominantly drives talker differences in auditory brainstem responses to continuous speech.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1