{"title":"Genetic diversity and population structure of natural provenances of Sonneratia caseolaris in Vietnam","authors":"Son Le , Thanh Van Le","doi":"10.1016/j.jgeb.2024.100356","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><em>Sommeratia caseolaris</em> is considered the most important mangrove species for reforestation and conservation programs. Therefore, the knowledge of genetic diversity and the population structure of the species has important implications both for the conservation of existing genetic resources and development programs. In the present study, the genetic diversity and structure population of eight populations of <em>S. caseolaris</em> from the Northern to the Southern Coast of Vietnam were determined using nine ISSR molecular markers.</p></div><div><h3>Results</h3><p>Eight populations of the mangrove species <em>Sonneratia caseolaris</em> were sampled across the natural range in Vietnam to evaluate the genetic diversity of the species. Nine ISSR markers were used to analyse 30 individuals from each population. There were moderate to high levels of genetic diversity (I = 0.447; h = 0.300). PCoA analysis gave very similar results to UPGMA dendrogram construction with the eight populations clustered into three genetic groups which mostly aligned with geographical distances among them. AMOVA analysis results indicated that most (81 %) of the genetic variation was within populations.</p></div><div><h3>Conclusion</h3><p>The current study also indicates the high level of genetic variation existing among and within the natural population of <em>S. caseolaris</em> in Vietnam. These results open new perspectives towards the conservation of the species' genetic resources and their future use in conservation and reforestation programs.</p></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1687157X24000556/pdfft?md5=edb054a0154f50aac3db667c18fe8266&pid=1-s2.0-S1687157X24000556-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetic Engineering and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687157X24000556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Sommeratia caseolaris is considered the most important mangrove species for reforestation and conservation programs. Therefore, the knowledge of genetic diversity and the population structure of the species has important implications both for the conservation of existing genetic resources and development programs. In the present study, the genetic diversity and structure population of eight populations of S. caseolaris from the Northern to the Southern Coast of Vietnam were determined using nine ISSR molecular markers.
Results
Eight populations of the mangrove species Sonneratia caseolaris were sampled across the natural range in Vietnam to evaluate the genetic diversity of the species. Nine ISSR markers were used to analyse 30 individuals from each population. There were moderate to high levels of genetic diversity (I = 0.447; h = 0.300). PCoA analysis gave very similar results to UPGMA dendrogram construction with the eight populations clustered into three genetic groups which mostly aligned with geographical distances among them. AMOVA analysis results indicated that most (81 %) of the genetic variation was within populations.
Conclusion
The current study also indicates the high level of genetic variation existing among and within the natural population of S. caseolaris in Vietnam. These results open new perspectives towards the conservation of the species' genetic resources and their future use in conservation and reforestation programs.
期刊介绍:
Journal of genetic engineering and biotechnology is devoted to rapid publication of full-length research papers that leads to significant contribution in advancing knowledge in genetic engineering and biotechnology and provide novel perspectives in this research area. JGEB includes all major themes related to genetic engineering and recombinant DNA. The area of interest of JGEB includes but not restricted to: •Plant genetics •Animal genetics •Bacterial enzymes •Agricultural Biotechnology, •Biochemistry, •Biophysics, •Bioinformatics, •Environmental Biotechnology, •Industrial Biotechnology, •Microbial biotechnology, •Medical Biotechnology, •Bioenergy, Biosafety, •Biosecurity, •Bioethics, •GMOS, •Genomic, •Proteomic JGEB accepts