Rapid screening of copper-based bimetallic catalysts via automatic electrocatalysis platform: Electrocatalytic reduction of CO2 to C2+ products on europium-modified copper

Yan Shen, Zihan Wang, Yihan Wang, Cheng Wang
{"title":"Rapid screening of copper-based bimetallic catalysts via automatic electrocatalysis platform: Electrocatalytic reduction of CO2 to C2+ products on europium-modified copper","authors":"Yan Shen,&nbsp;Zihan Wang,&nbsp;Yihan Wang,&nbsp;Cheng Wang","doi":"10.1016/j.aichem.2024.100056","DOIUrl":null,"url":null,"abstract":"<div><p>The electrocatalytic conversion of CO<sub>2</sub> (CO<sub>2</sub>RR) to multi-carbon products has been an appealing strategy to reduce carbon emissions. However, rapid experimental discovery of efficient CO<sub>2</sub>RR electrocatalysts and fast recording of full product distribution information is non-trivial. Herein, we used an electrocatalyst testing platform featuring a home-built automatic flow cell to accelerate catalysts screening. Based on 364 effective data points from 42 Cu-lanthanide bimetallic catalysts obtained within 21 working hours, we found that Eu modification over Cu can promote C<sub>2+</sub> faradaic efficiency (FE). We have previously reported part of the screening data and the optimization of the Mg-Cu catalyst(<em>Angew. Chem.</em> <strong>2022</strong>, <em>134</em>, e202213423). Here we augmented the dataset by adding the lanthanide modifiers and reported the Eu-Cu catalyst resulted from the high-throughput investigation. Our characterizations revealed that the Eu<sup>2+</sup> reduced from Eu<sup>3+</sup> during the catalyst synthesis prevented the agglomeration of nanoparticles, thus making europium modifications stand out from other lanthanide metal modifiers on FE C<sub>2+</sub> enhancement. We then optimized the Eu-CuO<sub>x</sub> catalyst based on the above understanding to achieve ∼80% C<sub>2+</sub> FE at a high current density of 1.25 A cm<sup>−2</sup>.</p></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":"2 1","pages":"Article 100056"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949747724000149/pdfft?md5=d1c6b7f6973c2f825f4024a496be4cd7&pid=1-s2.0-S2949747724000149-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747724000149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocatalytic conversion of CO2 (CO2RR) to multi-carbon products has been an appealing strategy to reduce carbon emissions. However, rapid experimental discovery of efficient CO2RR electrocatalysts and fast recording of full product distribution information is non-trivial. Herein, we used an electrocatalyst testing platform featuring a home-built automatic flow cell to accelerate catalysts screening. Based on 364 effective data points from 42 Cu-lanthanide bimetallic catalysts obtained within 21 working hours, we found that Eu modification over Cu can promote C2+ faradaic efficiency (FE). We have previously reported part of the screening data and the optimization of the Mg-Cu catalyst(Angew. Chem. 2022, 134, e202213423). Here we augmented the dataset by adding the lanthanide modifiers and reported the Eu-Cu catalyst resulted from the high-throughput investigation. Our characterizations revealed that the Eu2+ reduced from Eu3+ during the catalyst synthesis prevented the agglomeration of nanoparticles, thus making europium modifications stand out from other lanthanide metal modifiers on FE C2+ enhancement. We then optimized the Eu-CuOx catalyst based on the above understanding to achieve ∼80% C2+ FE at a high current density of 1.25 A cm−2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过自动电催化平台快速筛选铜基双金属催化剂:在铕改性铜上电催化还原 CO2 至 C2+ 产物
通过电催化将二氧化碳(CO2RR)转化为多碳产品一直是一种极具吸引力的碳减排策略。然而,通过实验快速发现高效的 CO2RR 电催化剂并快速记录完整的产品分布信息并非易事。在此,我们利用自建自动流动池的电催化剂测试平台来加速催化剂的筛选。基于在 21 个工作小时内从 42 种铜-镧系双金属催化剂中获得的 364 个有效数据点,我们发现在铜上进行 Eu 修饰可提高 C2+ 法拉第效率(FE)。我们曾报道过镁铜催化剂的部分筛选数据和优化方法(Angew.Chem.2022, 134, e202213423).在此,我们通过添加镧系元素改性剂扩充了数据集,并报告了高通量研究产生的Eu-Cu催化剂。我们的表征结果表明,在催化剂合成过程中,从 Eu3+ 中还原出的 Eu2+ 阻止了纳米颗粒的团聚,从而使铕改性在增强 FE C2+ 方面从其他镧系金属改性剂中脱颖而出。基于上述认识,我们对 Eu-CuOx 催化剂进行了优化,使其在 1.25 A cm-2 的高电流密度下实现了 ∼ 80% 的 C2+ FE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
期刊最新文献
AI-driven prediction of drug activity against Toxoplasma gondii: Data augmentation and deep neural networks for limited datasets Small-dataset-orientated data-driven screening for catalytic propane activation Machine learning for active sites prediction of quinoline derivatives Machine learning approaches for modelling of molecular polarizability in gold nanoclusters Evaluation of machine learning models for the accelerated prediction of density functional theory calculated 19F chemical shifts based on local atomic environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1