Rapid screening of copper-based bimetallic catalysts via automatic electrocatalysis platform: Electrocatalytic reduction of CO2 to C2+ products on europium-modified copper
{"title":"Rapid screening of copper-based bimetallic catalysts via automatic electrocatalysis platform: Electrocatalytic reduction of CO2 to C2+ products on europium-modified copper","authors":"Yan Shen, Zihan Wang, Yihan Wang, Cheng Wang","doi":"10.1016/j.aichem.2024.100056","DOIUrl":null,"url":null,"abstract":"<div><p>The electrocatalytic conversion of CO<sub>2</sub> (CO<sub>2</sub>RR) to multi-carbon products has been an appealing strategy to reduce carbon emissions. However, rapid experimental discovery of efficient CO<sub>2</sub>RR electrocatalysts and fast recording of full product distribution information is non-trivial. Herein, we used an electrocatalyst testing platform featuring a home-built automatic flow cell to accelerate catalysts screening. Based on 364 effective data points from 42 Cu-lanthanide bimetallic catalysts obtained within 21 working hours, we found that Eu modification over Cu can promote C<sub>2+</sub> faradaic efficiency (FE). We have previously reported part of the screening data and the optimization of the Mg-Cu catalyst(<em>Angew. Chem.</em> <strong>2022</strong>, <em>134</em>, e202213423). Here we augmented the dataset by adding the lanthanide modifiers and reported the Eu-Cu catalyst resulted from the high-throughput investigation. Our characterizations revealed that the Eu<sup>2+</sup> reduced from Eu<sup>3+</sup> during the catalyst synthesis prevented the agglomeration of nanoparticles, thus making europium modifications stand out from other lanthanide metal modifiers on FE C<sub>2+</sub> enhancement. We then optimized the Eu-CuO<sub>x</sub> catalyst based on the above understanding to achieve ∼80% C<sub>2+</sub> FE at a high current density of 1.25 A cm<sup>−2</sup>.</p></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":"2 1","pages":"Article 100056"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949747724000149/pdfft?md5=d1c6b7f6973c2f825f4024a496be4cd7&pid=1-s2.0-S2949747724000149-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747724000149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The electrocatalytic conversion of CO2 (CO2RR) to multi-carbon products has been an appealing strategy to reduce carbon emissions. However, rapid experimental discovery of efficient CO2RR electrocatalysts and fast recording of full product distribution information is non-trivial. Herein, we used an electrocatalyst testing platform featuring a home-built automatic flow cell to accelerate catalysts screening. Based on 364 effective data points from 42 Cu-lanthanide bimetallic catalysts obtained within 21 working hours, we found that Eu modification over Cu can promote C2+ faradaic efficiency (FE). We have previously reported part of the screening data and the optimization of the Mg-Cu catalyst(Angew. Chem.2022, 134, e202213423). Here we augmented the dataset by adding the lanthanide modifiers and reported the Eu-Cu catalyst resulted from the high-throughput investigation. Our characterizations revealed that the Eu2+ reduced from Eu3+ during the catalyst synthesis prevented the agglomeration of nanoparticles, thus making europium modifications stand out from other lanthanide metal modifiers on FE C2+ enhancement. We then optimized the Eu-CuOx catalyst based on the above understanding to achieve ∼80% C2+ FE at a high current density of 1.25 A cm−2.