GPT classifications, with application to credit lending

Golnoosh Babaei, Paolo Giudici
{"title":"GPT classifications, with application to credit lending","authors":"Golnoosh Babaei,&nbsp;Paolo Giudici","doi":"10.1016/j.mlwa.2024.100534","DOIUrl":null,"url":null,"abstract":"<div><p>Generative Pre-trained Transformers (GPT) and Large language models (LLMs) have made significant advancements in natural language processing in recent years. The practical applications of LLMs are undeniable, rendering moot any debate about their impending influence. The power of LLMs has made them similar to machine learning models for decision-making problems. In this paper, we focus on binary classification which is a common use of ML models, particularly in credit lending applications. We show how a GPT model can perform almost as accurately as a classical logistic machine learning model but with a much lower number of sample observations. In particular, we show how, in the context of credit lending, LLMs can be improved and reach performances similar to classical logistic regression models using only a small set of examples.</p></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"16 ","pages":"Article 100534"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666827024000100/pdfft?md5=6b1b9c86ebd9e871a9ace0066d5292f2&pid=1-s2.0-S2666827024000100-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827024000100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative Pre-trained Transformers (GPT) and Large language models (LLMs) have made significant advancements in natural language processing in recent years. The practical applications of LLMs are undeniable, rendering moot any debate about their impending influence. The power of LLMs has made them similar to machine learning models for decision-making problems. In this paper, we focus on binary classification which is a common use of ML models, particularly in credit lending applications. We show how a GPT model can perform almost as accurately as a classical logistic machine learning model but with a much lower number of sample observations. In particular, we show how, in the context of credit lending, LLMs can be improved and reach performances similar to classical logistic regression models using only a small set of examples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPT 分类,适用于信用贷款
近年来,预训练生成变换器(GPT)和大型语言模型(LLM)在自然语言处理领域取得了重大进展。LLMs 的实际应用是毋庸置疑的,这使得任何关于其即将产生的影响的争论都变得毫无意义。LLM 的强大功能使其在决策问题上类似于机器学习模型。在本文中,我们将重点放在二元分类上,这是 ML 模型的常见用途,尤其是在信用借贷应用中。我们展示了 GPT 模型如何在样本观察数少得多的情况下,实现与经典逻辑机器学习模型几乎一样的精确度。特别是,我们展示了在信用借贷的背景下,如何改进 LLM,使其仅使用一小部分示例就能达到与经典逻辑回归模型类似的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
期刊最新文献
Document Layout Error Rate (DLER) metric to evaluate image segmentation methods Supervised machine learning for microbiomics: Bridging the gap between current and best practices Playing with words: Comparing the vocabulary and lexical diversity of ChatGPT and humans A survey on knowledge distillation: Recent advancements Texas rural land market integration: A causal analysis using machine learning applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1