The modified mesoscopic stochastic fracture model incorporating the random field of Young's modulus for the uniaxial constitutive law of concrete

IF 3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Probabilistic Engineering Mechanics Pub Date : 2024-01-01 DOI:10.1016/j.probengmech.2024.103585
Yang-Yi Liu , Jian-Bing Chen , Jie Li
{"title":"The modified mesoscopic stochastic fracture model incorporating the random field of Young's modulus for the uniaxial constitutive law of concrete","authors":"Yang-Yi Liu ,&nbsp;Jian-Bing Chen ,&nbsp;Jie Li","doi":"10.1016/j.probengmech.2024.103585","DOIUrl":null,"url":null,"abstract":"<div><p>Concrete is a multi-phase composite material that exhibits nonlinear and random characteristics in various contexts. The mesoscopic stochastic fracture model (MSFM) was developed to capture the constitutive behaviors of concrete. However, it is still not accurate enough to quantify the randomness of stress-strain curves in the ascending phase, and the variability of the strength might be considerably underestimated. In this paper, to remedy the above deficiencies, two alternative modifications to the MSFM are proposed. In the modified models, in addition to the random field of mesoscale fracture strain, Young's modulus of meso-springs is also quantified by a single random variable or a random field, respectively. The mathematical expressions for the mean and standard deviation of the uni-axial compressive stress-strain curves of concrete in the modified models are derived. Furthermore, based on the data from tested complete compressive stress-strain relationships of concrete with different strength grades, the parameters in the two modified MSFMs are identified by combining the genetic algorithm and a dimension-reduction algorithm. The results show that the accuracy of the modified models involving the randomness from both the mesoscale fracture strain and the mesoscale Young's modulus is greatly improved compared to the existing MSFM in capturing both the variability of concrete strength and the standard deviation in the ascending phase of the stress-strain relationship of concrete.</p></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"75 ","pages":"Article 103585"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024000079","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Concrete is a multi-phase composite material that exhibits nonlinear and random characteristics in various contexts. The mesoscopic stochastic fracture model (MSFM) was developed to capture the constitutive behaviors of concrete. However, it is still not accurate enough to quantify the randomness of stress-strain curves in the ascending phase, and the variability of the strength might be considerably underestimated. In this paper, to remedy the above deficiencies, two alternative modifications to the MSFM are proposed. In the modified models, in addition to the random field of mesoscale fracture strain, Young's modulus of meso-springs is also quantified by a single random variable or a random field, respectively. The mathematical expressions for the mean and standard deviation of the uni-axial compressive stress-strain curves of concrete in the modified models are derived. Furthermore, based on the data from tested complete compressive stress-strain relationships of concrete with different strength grades, the parameters in the two modified MSFMs are identified by combining the genetic algorithm and a dimension-reduction algorithm. The results show that the accuracy of the modified models involving the randomness from both the mesoscale fracture strain and the mesoscale Young's modulus is greatly improved compared to the existing MSFM in capturing both the variability of concrete strength and the standard deviation in the ascending phase of the stress-strain relationship of concrete.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
修正的介观随机断裂模型纳入了混凝土单轴构成法的杨氏模量随机场
混凝土是一种多相复合材料,在各种情况下都表现出非线性和随机特性。介观随机断裂模型(MSFM)就是为了捕捉混凝土的构成行为而开发的。然而,该模型在量化上升阶段应力-应变曲线的随机性方面仍不够精确,强度的可变性可能被大大低估。为了弥补上述不足,本文提出了 MSFM 的两种备选修改方案。在修改后的模型中,除了中尺度断裂应变的随机场外,中弹簧的杨氏模量也分别由单个随机变量或随机场量化。推导出了修正模型中混凝土单轴压应力-应变曲线的平均值和标准偏差的数学表达式。此外,根据不同强度等级混凝土完整压应力-应变关系的测试数据,结合遗传算法和降维算法,确定了两个修正 MSFM 的参数。结果表明,与现有的 MSFM 相比,包含中尺度断裂应变和中尺度杨氏模量随机性的修正模型在捕捉混凝土强度变异性和混凝土应力应变关系上升阶段的标准偏差方面的准确性都有很大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Probabilistic Engineering Mechanics
Probabilistic Engineering Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
15.40%
发文量
98
审稿时长
13.5 months
期刊介绍: This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.
期刊最新文献
Real-time anomaly detection of the stochastically excited systems on spherical (S2) manifold Nonprobabilistic time-dependent reliability analysis for uncertain structures under interval process loads Fractional-order filter approximations for efficient stochastic response determination of wind-excited linear structural systems Seismic reliability analysis using Subset Simulation enhanced with an explorative adaptive conditional sampling algorithm Efficient optimization-based method for simultaneous calibration of load and resistance factors considering multiple target reliability indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1