Caroline Wade , Mark Trotter , Anita Chang , Caitriana Steele , Lara Prihodko , Derek W. Bailey
{"title":"Use of Global Positioning System Tracking to Assess Landscape Distribution in Extensive Small Ruminant Operations","authors":"Caroline Wade , Mark Trotter , Anita Chang , Caitriana Steele , Lara Prihodko , Derek W. Bailey","doi":"10.1016/j.rama.2024.01.010","DOIUrl":null,"url":null,"abstract":"<div><p>Landscape distribution and grazing management of small ruminants are becoming more important issues as the sheep and goat industry continues to grow. The objective of this study was to evaluate spatial movement patterns of sheep and goats in Queensland, Australia using Global Positioning System (GPS) tracking to determine daily distance traveled, distance traveled from water, activity levels, and the influence of ambient temperature on these metrics. Optimized hotspot analysis was also performed to determine areas of increased small ruminant presence across the landscape. GPS positions were recorded at 10-min intervals over the course of several months. Sheep and goats traveled an average distance from water of 0.6–1.1 km, with a maximum of 2.4 km. Daily distance traveled of sheep and goats averaged 6–9 km·d<sup>−1</sup>, with a maximum of 11 km·d<sup>−1</sup>. Average daily activity ranged between 42% and 47%. The overall trend of the datum showed that increased temperature led to decreased daily distance traveled, distance traveled from water, and activity of sheep and goats. The hotspot analyses showed a higher concentration of sheep and goats near water sources. Understanding small ruminant distribution in extensive rangeland pastures helps producers implement management regimes to improve efficacy and sustainability of land use and production.</p></div>","PeriodicalId":49634,"journal":{"name":"Rangeland Ecology & Management","volume":"94 ","pages":"Pages 29-37"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1550742424000071/pdfft?md5=5fce9406a2a693896f67c4b65dca8394&pid=1-s2.0-S1550742424000071-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rangeland Ecology & Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1550742424000071","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Landscape distribution and grazing management of small ruminants are becoming more important issues as the sheep and goat industry continues to grow. The objective of this study was to evaluate spatial movement patterns of sheep and goats in Queensland, Australia using Global Positioning System (GPS) tracking to determine daily distance traveled, distance traveled from water, activity levels, and the influence of ambient temperature on these metrics. Optimized hotspot analysis was also performed to determine areas of increased small ruminant presence across the landscape. GPS positions were recorded at 10-min intervals over the course of several months. Sheep and goats traveled an average distance from water of 0.6–1.1 km, with a maximum of 2.4 km. Daily distance traveled of sheep and goats averaged 6–9 km·d−1, with a maximum of 11 km·d−1. Average daily activity ranged between 42% and 47%. The overall trend of the datum showed that increased temperature led to decreased daily distance traveled, distance traveled from water, and activity of sheep and goats. The hotspot analyses showed a higher concentration of sheep and goats near water sources. Understanding small ruminant distribution in extensive rangeland pastures helps producers implement management regimes to improve efficacy and sustainability of land use and production.
期刊介绍:
Rangeland Ecology & Management publishes all topics-including ecology, management, socioeconomic and policy-pertaining to global rangelands. The journal''s mission is to inform academics, ecosystem managers and policy makers of science-based information to promote sound rangeland stewardship. Author submissions are published in five manuscript categories: original research papers, high-profile forum topics, concept syntheses, as well as research and technical notes.
Rangelands represent approximately 50% of the Earth''s land area and provision multiple ecosystem services for large human populations. This expansive and diverse land area functions as coupled human-ecological systems. Knowledge of both social and biophysical system components and their interactions represent the foundation for informed rangeland stewardship. Rangeland Ecology & Management uniquely integrates information from multiple system components to address current and pending challenges confronting global rangelands.