Translating the regulatory landscape of medical devices to create fit-for-purpose artificial intelligence (AI) cytometry solutions

IF 2.3 3区 医学 Q3 MEDICAL LABORATORY TECHNOLOGY Cytometry Part B: Clinical Cytometry Pub Date : 2024-02-23 DOI:10.1002/cyto.b.22167
Goce Bogdanoski, Fabienne Lucas, Wolfgang Kern, Kamila Czechowska
{"title":"Translating the regulatory landscape of medical devices to create fit-for-purpose artificial intelligence (AI) cytometry solutions","authors":"Goce Bogdanoski,&nbsp;Fabienne Lucas,&nbsp;Wolfgang Kern,&nbsp;Kamila Czechowska","doi":"10.1002/cyto.b.22167","DOIUrl":null,"url":null,"abstract":"<p>The implementation of medical software and artificial intelligence (AI) algorithms into routine clinical cytometry diagnostic practice requires a thorough understanding of regulatory requirements and challenges throughout the cytometry software product lifecycle. To provide cytometry software developers, computational scientists, researchers, industry professionals, and diagnostic physicians/pathologists with an introduction to European Union (EU) and United States (US) regulatory frameworks. Informed by community feedback and needs assessment established during two international cytometry workshops, this article provides an overview of regulatory landscapes as they pertain to the application of AI, AI-enabled medical devices, and Software as a Medical Device in diagnostic flow cytometry. Evolving regulatory frameworks are discussed, and specific examples regarding cytometry instruments, analysis software and clinical flow cytometry in-vitro diagnostic assays are provided. An important consideration for cytometry software development is the modular approach. As such, modules can be segregated and treated as independent components based on the medical purpose and risk and become subjected to a range of context-dependent compliance and regulatory requirements throughout their life cycle. Knowledge of regulatory and compliance requirements enhances the communication and collaboration between developers, researchers, end-users and regulators. This connection is essential to translate scientific innovation into diagnostic practice and to continue to shape the development and revision of new policies, standards, and approaches.</p>","PeriodicalId":10883,"journal":{"name":"Cytometry Part B: Clinical Cytometry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part B: Clinical Cytometry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.b.22167","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The implementation of medical software and artificial intelligence (AI) algorithms into routine clinical cytometry diagnostic practice requires a thorough understanding of regulatory requirements and challenges throughout the cytometry software product lifecycle. To provide cytometry software developers, computational scientists, researchers, industry professionals, and diagnostic physicians/pathologists with an introduction to European Union (EU) and United States (US) regulatory frameworks. Informed by community feedback and needs assessment established during two international cytometry workshops, this article provides an overview of regulatory landscapes as they pertain to the application of AI, AI-enabled medical devices, and Software as a Medical Device in diagnostic flow cytometry. Evolving regulatory frameworks are discussed, and specific examples regarding cytometry instruments, analysis software and clinical flow cytometry in-vitro diagnostic assays are provided. An important consideration for cytometry software development is the modular approach. As such, modules can be segregated and treated as independent components based on the medical purpose and risk and become subjected to a range of context-dependent compliance and regulatory requirements throughout their life cycle. Knowledge of regulatory and compliance requirements enhances the communication and collaboration between developers, researchers, end-users and regulators. This connection is essential to translate scientific innovation into diagnostic practice and to continue to shape the development and revision of new policies, standards, and approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转变医疗设备的监管环境,创建适用的人工智能(AI)细胞测量解决方案。
将医疗软件和人工智能(AI)算法应用到常规临床细胞计量诊断实践中,需要全面了解整个细胞计量软件产品生命周期的监管要求和挑战。向细胞测量软件开发人员、计算科学家、研究人员、行业专业人士和诊断医师/病理学家介绍欧盟(EU)和美国(US)的监管框架。本文以两次国际流式细胞仪研讨会期间建立的社区反馈和需求评估为基础,概述了与人工智能、人工智能医疗设备和软件即医疗设备在诊断流式细胞仪中的应用有关的监管情况。文中讨论了不断演变的监管框架,并提供了有关流式细胞仪、分析软件和临床流式细胞仪体外诊断检测的具体实例。细胞测量软件开发的一个重要考虑因素是模块化方法。因此,可根据医疗目的和风险将模块作为独立组件进行隔离和处理,并在其整个生命周期中遵守一系列与具体情况相关的合规性和监管要求。对监管和合规要求的了解可以加强开发人员、研究人员、最终用户和监管人员之间的沟通与合作。这种联系对于将科学创新转化为诊断实践以及继续制定和修订新政策、标准和方法至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
32.40%
发文量
51
审稿时长
>12 weeks
期刊介绍: Cytometry Part B: Clinical Cytometry features original research reports, in-depth reviews and special issues that directly relate to and palpably impact clinical flow, mass and image-based cytometry. These may include clinical and translational investigations important in the diagnostic, prognostic and therapeutic management of patients. Thus, we welcome research papers from various disciplines related [but not limited to] hematopathologists, hematologists, immunologists and cell biologists with clinically relevant and innovative studies investigating individual-cell analytics and/or separations. In addition to the types of papers indicated above, we also welcome Letters to the Editor, describing case reports or important medical or technical topics relevant to our readership without the length and depth of a full original report.
期刊最新文献
CD38, CD39, and BCL2 differentiate disseminated forms of high-grade B-cell lymphomas in biological fluids from Burkitt lymphoma and diffuse large B-cell lymphoma. Converting an HLA‐B27 flow assay from the BD FACSCanto to the BD FACSLyric A comprehensive 26‐color immunophenotyping panel to study the role of the gut‐liver axis in chronic liver diseases CD133 in T-lymphoblastic leukemia is preferentially expressed in early T-phenotype (ETP) and near ETP subtypes. Appropriate interpretation of TRBC1-dim positive subsets in T-cell immunophenotyping by flow cytometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1