Mapping the transporter-substrate interactions of the Trypanosoma cruzi NB1 nucleobase transporter reveals the basis for its high affinity and selectivity for hypoxanthine and guanine and lack of nucleoside uptake
Mustafa M. Aldfer , Fabian Hulpia , Serge van Calenbergh , Harry P. De Koning
{"title":"Mapping the transporter-substrate interactions of the Trypanosoma cruzi NB1 nucleobase transporter reveals the basis for its high affinity and selectivity for hypoxanthine and guanine and lack of nucleoside uptake","authors":"Mustafa M. Aldfer , Fabian Hulpia , Serge van Calenbergh , Harry P. De Koning","doi":"10.1016/j.molbiopara.2024.111616","DOIUrl":null,"url":null,"abstract":"<div><p><em>Trypanosoma cruzi</em> is a protozoan parasite and the etiological agent of Chagas disease, a debilitating and sometimes fatal disease that continues to spread to new areas. Yet, Chagas disease is still only treated with two related nitro compounds that are insufficiently effective and cause severe side effects. Nucleotide metabolism is one of the known vulnerabilities of <em>T. cruzi</em>, as they are auxotrophic for purines, and nucleoside analogues have been shown to have genuine promise against this parasite in vitro and in vivo. Since purine antimetabolites require efficient uptake through transporters, we here report a detailed characterisation of the <em>T. cruzi</em> NB1 nucleobase transporter with the aim of elucidating the interactions between TcrNB1 and its substrates and finding the positions that can be altered in the design of novel antimetabolites without losing transportability. Systematically determining the inhibition constants (K<sub>i</sub>) of purine analogues for TcrNB1 yielded their Gibbs free energy of interaction, ΔG<sup>0</sup>. Pairwise comparisons of substrate (hypoxanthine, guanine, adenine) and analogues allowed us to determine that optimal binding affinity by TcrNB1 requires interactions with all four nitrogen residues of the purine ring, with N1 and N9, in protonation state, functioning as presumed hydrogen bond donors and unprotonated N3 and N7 as hydrogen bond acceptors. This is the same interaction pattern as we previously described for the main nucleobase transporters of <em>Trypanosoma brucei</em> spp. and <em>Leishmania major</em> and makes it the first of the ENT-family genes that is functionally as well as genetically conserved between the three main kinetoplast pathogens.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166685124000094/pdfft?md5=723135537fb81d81bb48861417315e0f&pid=1-s2.0-S0166685124000094-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and biochemical parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166685124000094","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Trypanosoma cruzi is a protozoan parasite and the etiological agent of Chagas disease, a debilitating and sometimes fatal disease that continues to spread to new areas. Yet, Chagas disease is still only treated with two related nitro compounds that are insufficiently effective and cause severe side effects. Nucleotide metabolism is one of the known vulnerabilities of T. cruzi, as they are auxotrophic for purines, and nucleoside analogues have been shown to have genuine promise against this parasite in vitro and in vivo. Since purine antimetabolites require efficient uptake through transporters, we here report a detailed characterisation of the T. cruzi NB1 nucleobase transporter with the aim of elucidating the interactions between TcrNB1 and its substrates and finding the positions that can be altered in the design of novel antimetabolites without losing transportability. Systematically determining the inhibition constants (Ki) of purine analogues for TcrNB1 yielded their Gibbs free energy of interaction, ΔG0. Pairwise comparisons of substrate (hypoxanthine, guanine, adenine) and analogues allowed us to determine that optimal binding affinity by TcrNB1 requires interactions with all four nitrogen residues of the purine ring, with N1 and N9, in protonation state, functioning as presumed hydrogen bond donors and unprotonated N3 and N7 as hydrogen bond acceptors. This is the same interaction pattern as we previously described for the main nucleobase transporters of Trypanosoma brucei spp. and Leishmania major and makes it the first of the ENT-family genes that is functionally as well as genetically conserved between the three main kinetoplast pathogens.
期刊介绍:
The journal provides a medium for rapid publication of investigations of the molecular biology and biochemistry of parasitic protozoa and helminths and their interactions with both the definitive and intermediate host. The main subject areas covered are:
• the structure, biosynthesis, degradation, properties and function of DNA, RNA, proteins, lipids, carbohydrates and small molecular-weight substances
• intermediary metabolism and bioenergetics
• drug target characterization and the mode of action of antiparasitic drugs
• molecular and biochemical aspects of membrane structure and function
• host-parasite relationships that focus on the parasite, particularly as related to specific parasite molecules.
• analysis of genes and genome structure, function and expression
• analysis of variation in parasite populations relevant to genetic exchange, pathogenesis, drug and vaccine target characterization, and drug resistance.
• parasite protein trafficking, organelle biogenesis, and cellular structure especially with reference to the roles of specific molecules
• parasite programmed cell death, development, and cell division at the molecular level.