Subgroup identification-based model selection to improve the predictive performance of individualized dosing.

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY Journal of Pharmacokinetics and Pharmacodynamics Pub Date : 2024-06-01 Epub Date: 2024-02-24 DOI:10.1007/s10928-024-09909-8
Hiie Soeorg, Riste Kalamees, Irja Lutsar, Tuuli Metsvaht
{"title":"Subgroup identification-based model selection to improve the predictive performance of individualized dosing.","authors":"Hiie Soeorg, Riste Kalamees, Irja Lutsar, Tuuli Metsvaht","doi":"10.1007/s10928-024-09909-8","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, model-informed precision dosing uses one population pharmacokinetic model that best fits the target population. We aimed to develop a subgroup identification-based model selection approach to improve the predictive performance of individualized dosing, using vancomycin in neonates/infants as a test case. Data from neonates/infants with at least one vancomycin concentration was randomly divided into training and test dataset. Population predictions from published vancomycin population pharmacokinetic models were calculated. The single best-performing model based on various performance metrics, including median absolute percentage error (APE) and percentage of predictions within 20% (P20) or 60% (P60) of measurement, were determined. Clustering based on median APEs or clinical and demographic characteristics and model selection by genetic algorithm was used to group neonates/infants according to their best-performing model. Subsequently, classification trees to predict the best-performing model using clinical and demographic characteristics were developed. A total of 208 vancomycin treatment episodes in training and 88 in test dataset was included. Of 30 identified models from the literature, the single best-performing model for training dataset had P20 26.2-42.6% in test dataset. The best-performing clustering approach based on median APEs or clinical and demographic characteristics and model selection by genetic algorithm had P20 44.1-45.5% in test dataset, whereas P60 was comparable. Our proof-of-concept study shows that the prediction of the best-performing model for each patient according to the proposed model selection approaches has the potential to improve the predictive performance of model-informed precision dosing compared with the single best-performing model approach.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"253-263"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-024-09909-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, model-informed precision dosing uses one population pharmacokinetic model that best fits the target population. We aimed to develop a subgroup identification-based model selection approach to improve the predictive performance of individualized dosing, using vancomycin in neonates/infants as a test case. Data from neonates/infants with at least one vancomycin concentration was randomly divided into training and test dataset. Population predictions from published vancomycin population pharmacokinetic models were calculated. The single best-performing model based on various performance metrics, including median absolute percentage error (APE) and percentage of predictions within 20% (P20) or 60% (P60) of measurement, were determined. Clustering based on median APEs or clinical and demographic characteristics and model selection by genetic algorithm was used to group neonates/infants according to their best-performing model. Subsequently, classification trees to predict the best-performing model using clinical and demographic characteristics were developed. A total of 208 vancomycin treatment episodes in training and 88 in test dataset was included. Of 30 identified models from the literature, the single best-performing model for training dataset had P20 26.2-42.6% in test dataset. The best-performing clustering approach based on median APEs or clinical and demographic characteristics and model selection by genetic algorithm had P20 44.1-45.5% in test dataset, whereas P60 was comparable. Our proof-of-concept study shows that the prediction of the best-performing model for each patient according to the proposed model selection approaches has the potential to improve the predictive performance of model-informed precision dosing compared with the single best-performing model approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于亚组识别的模型选择,提高个体化用药的预测性能。
目前,基于模型的精准给药使用最适合目标人群的群体药代动力学模型。我们旨在开发一种基于亚组识别的模型选择方法,以新生儿/婴儿中的万古霉素为测试案例,提高个体化用药的预测性能。新生儿/婴儿中至少有一种万古霉素浓度的数据被随机分为训练数据集和测试数据集。计算已发表的万古霉素群体药代动力学模型的群体预测值。根据各种性能指标,包括绝对百分比误差中值(APE)和测量值在 20% (P20) 或 60% (P60) 范围内的预测百分比,确定了表现最佳的单一模型。根据 APE 中位数或临床和人口统计学特征进行聚类,并通过遗传算法选择模型,根据表现最佳的模型对新生儿/婴儿进行分组。随后,利用临床和人口学特征开发了分类树来预测表现最佳的模型。在训练数据集中共纳入了 208 个万古霉素治疗病例,在测试数据集中共纳入了 88 个病例。在文献中确定的 30 个模型中,训练数据集中表现最好的一个模型在测试数据集中的 P20 为 26.2-42.6%。基于 APE 中位数或临床和人口特征的最佳聚类方法以及通过遗传算法选择的模型在测试数据集中的 P20 为 44.1-45.5%,而 P60 与之相当。我们的概念验证研究表明,与单一最佳表现模型方法相比,根据建议的模型选择方法为每位患者预测最佳表现模型有可能提高模型信息精准用药的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
期刊最新文献
Novel endpoints based on tumor size ratio to support early clinical decision-making in oncology drug-development. Translational pharmacokinetic and pharmacodynamic modelling of the anti-ADAMTS-5 NANOBODY® (M6495) using the neo-epitope ARGS as a biomarker. QSP modeling of a transiently inactivating antibody-drug conjugate highlights benefit of short antibody half life. A PopPBPK-RL approach for precision dosing of benazepril in renal impaired patients. Comparison of the power and type 1 error of total score models for drug effect detection in clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1