{"title":"Efficient bosonic nonlinear phase gates","authors":"Kimin Park, Radim Filip","doi":"10.1038/s41534-024-00816-x","DOIUrl":null,"url":null,"abstract":"<p>Continuous-variable (CV) quantum information processing harnesses versatile experimental tools that leverage the power of infinite-dimensional oscillators controlled by a single qubit. Increasingly available elementary Rabi gates have been proposed as a resource for implementing universal CV gates, but the requirement of many weak, non-commuting gates is a bottleneck in scaling up such an approach. In this study, we propose a resource-efficient technique using Fourier expansion to implement arbitrary non-linear phase gates in a single oscillator. This method reduces the number of sequentially required gates exponentially. These gates represented by cubic, quartic, and other arbitrary nonlinear potentials have applications in CV quantum information processing with infinite-dimensional oscillators controlled by a single qubit. Our method outperforms previous approaches and enables the experimental realization of a wide range of applications, including the development of bosonic quantum sensors, simulations, and computation using trapped ions and superconducting circuits.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"12 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00816-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous-variable (CV) quantum information processing harnesses versatile experimental tools that leverage the power of infinite-dimensional oscillators controlled by a single qubit. Increasingly available elementary Rabi gates have been proposed as a resource for implementing universal CV gates, but the requirement of many weak, non-commuting gates is a bottleneck in scaling up such an approach. In this study, we propose a resource-efficient technique using Fourier expansion to implement arbitrary non-linear phase gates in a single oscillator. This method reduces the number of sequentially required gates exponentially. These gates represented by cubic, quartic, and other arbitrary nonlinear potentials have applications in CV quantum information processing with infinite-dimensional oscillators controlled by a single qubit. Our method outperforms previous approaches and enables the experimental realization of a wide range of applications, including the development of bosonic quantum sensors, simulations, and computation using trapped ions and superconducting circuits.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.