Self-reflective terrain-aware robot adaptation for consistent off-road ground navigation

Sriram Siva, Maggie Wigness, John G. Rogers, Long Quang, Hao Zhang
{"title":"Self-reflective terrain-aware robot adaptation for consistent off-road ground navigation","authors":"Sriram Siva, Maggie Wigness, John G. Rogers, Long Quang, Hao Zhang","doi":"10.1177/02783649231225243","DOIUrl":null,"url":null,"abstract":"Ground robots require the crucial capability of traversing unstructured and unprepared terrains and avoiding obstacles to complete tasks in real-world robotics applications such as disaster response. When a robot operates in off-road field environments such as forests, the robot’s actual behaviors often do not match its expected or planned behaviors, due to changes in the characteristics of terrains and the robot itself. Therefore, the capability of robot adaptation for consistent behavior generation is essential for maneuverability on unstructured off-road terrains. In order to address the challenge, we propose a novel method of self-reflective terrain-aware adaptation for ground robots to generate consistent controls to navigate over unstructured off-road terrains, which enables robots to more accurately execute the expected behaviors through robot self-reflection while adapting to varying unstructured terrains. To evaluate our method’s performance, we conduct extensive experiments using real ground robots with various functionality changes over diverse unstructured off-road terrains. The comprehensive experimental results have shown that our self-reflective terrain-aware adaptation method enables ground robots to generate consistent navigational behaviors and outperforms the compared previous and baseline techniques.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/02783649231225243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ground robots require the crucial capability of traversing unstructured and unprepared terrains and avoiding obstacles to complete tasks in real-world robotics applications such as disaster response. When a robot operates in off-road field environments such as forests, the robot’s actual behaviors often do not match its expected or planned behaviors, due to changes in the characteristics of terrains and the robot itself. Therefore, the capability of robot adaptation for consistent behavior generation is essential for maneuverability on unstructured off-road terrains. In order to address the challenge, we propose a novel method of self-reflective terrain-aware adaptation for ground robots to generate consistent controls to navigate over unstructured off-road terrains, which enables robots to more accurately execute the expected behaviors through robot self-reflection while adapting to varying unstructured terrains. To evaluate our method’s performance, we conduct extensive experiments using real ground robots with various functionality changes over diverse unstructured off-road terrains. The comprehensive experimental results have shown that our self-reflective terrain-aware adaptation method enables ground robots to generate consistent navigational behaviors and outperforms the compared previous and baseline techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自反射地形感知机器人适应性,实现一致的越野地面导航
地面机器人需要具备穿越非结构化和无准备地形以及避开障碍物的关键能力,以完成灾难响应等实际机器人应用中的任务。当机器人在森林等越野野外环境中工作时,由于地形和机器人自身特性的变化,机器人的实际行为往往与预期或计划行为不一致。因此,要想在非结构化越野地形上实现可操作性,就必须具备机器人自适应能力,以生成一致的行为。为了应对这一挑战,我们提出了一种新颖的自反地形感知适应方法,用于地面机器人在非结构化越野地形上生成一致的导航控制,通过机器人自反,使机器人能够更准确地执行预期行为,同时适应不同的非结构化地形。为了评估我们方法的性能,我们使用真实的地面机器人在各种非结构化越野地形上进行了广泛的实验,这些机器人具有不同的功能变化。综合实验结果表明,我们的自反射地形感知适应方法能够让地面机器人产生一致的导航行为,并且优于之前的技术和基准技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transfer learning in robotics: An upcoming breakthrough? A review of promises and challenges Selected papers from WAFR 2022 Continuum concentric push–pull robots: A Cosserat rod model Sim-to-real transfer of adaptive control parameters for AUV stabilisation under current disturbance No compromise in solution quality: Speeding up belief-dependent continuous partially observable Markov decision processes via adaptive multilevel simplification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1