The surface edge explorer (SEE): A measurement-direct approach to next best view planning

Rowan Border, Jonathan D. Gammell
{"title":"The surface edge explorer (SEE): A measurement-direct approach to next best view planning","authors":"Rowan Border, Jonathan D. Gammell","doi":"10.1177/02783649241230098","DOIUrl":null,"url":null,"abstract":"High-quality observations of the real world are crucial for a variety of applications, including producing 3D printed replicas of small-scale scenes and conducting inspections of large-scale infrastructure. These 3D observations are commonly obtained by combining multiple sensor measurements from different views. Guiding the selection of suitable views is known as the Next Best View (NBV) planning problem. Most NBV approaches reason about measurements using rigid data structures (e.g., surface meshes or voxel grids). This simplifies next best view selection but can be computationally expensive, reduces real-world fidelity and couples the selection of a next best view with the final data processing. This paper presents the Surface Edge Explorer (SEE), a NBV approach that selects new observations directly from previous sensor measurements without requiring rigid data structures. SEE uses measurement density to propose next best views that increase coverage of insufficiently observed surfaces while avoiding potential occlusions. Statistical results from simulated experiments show that SEE can attain similar or better surface coverage with less observation time and travel distance than evaluated volumetric approaches on both small- and large-scale scenes. Real-world experiments demonstrate SEE autonomously observing a deer statue using a 3D sensor affixed to a robotic arm.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/02783649241230098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-quality observations of the real world are crucial for a variety of applications, including producing 3D printed replicas of small-scale scenes and conducting inspections of large-scale infrastructure. These 3D observations are commonly obtained by combining multiple sensor measurements from different views. Guiding the selection of suitable views is known as the Next Best View (NBV) planning problem. Most NBV approaches reason about measurements using rigid data structures (e.g., surface meshes or voxel grids). This simplifies next best view selection but can be computationally expensive, reduces real-world fidelity and couples the selection of a next best view with the final data processing. This paper presents the Surface Edge Explorer (SEE), a NBV approach that selects new observations directly from previous sensor measurements without requiring rigid data structures. SEE uses measurement density to propose next best views that increase coverage of insufficiently observed surfaces while avoiding potential occlusions. Statistical results from simulated experiments show that SEE can attain similar or better surface coverage with less observation time and travel distance than evaluated volumetric approaches on both small- and large-scale scenes. Real-world experiments demonstrate SEE autonomously observing a deer statue using a 3D sensor affixed to a robotic arm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表面边缘探索器(SEE):下一个最佳视角规划的直接测量方法
对现实世界的高质量观测对于各种应用都至关重要,包括制作小规模场景的 3D 打印复制品和对大型基础设施进行检测。这些三维观测数据通常是通过组合来自不同视角的多个传感器测量数据而获得的。指导选择合适的视图被称为下一个最佳视图(NBV)规划问题。大多数 NBV 方法使用刚性数据结构(如曲面网格或体素网格)对测量结果进行推理。这种方法简化了下一个最佳视图的选择,但计算成本高,降低了真实世界的保真度,并将下一个最佳视图的选择与最终数据处理结合在一起。本文介绍了表面边缘资源管理器(SEE),这是一种 NBV 方法,可直接从以前的传感器测量结果中选择新的观测值,而无需刚性数据结构。SEE 利用测量密度提出下一个最佳视图,以增加对观测不足的表面的覆盖范围,同时避免潜在的遮挡。模拟实验的统计结果表明,在小型和大型场景中,与已评估过的体积方法相比,SEE 能以更短的观测时间和移动距离实现类似或更好的表面覆盖。真实世界的实验演示了 SEE 使用机器人手臂上的 3D 传感器自主观测鹿的雕像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transfer learning in robotics: An upcoming breakthrough? A review of promises and challenges Selected papers from WAFR 2022 Continuum concentric push–pull robots: A Cosserat rod model Sim-to-real transfer of adaptive control parameters for AUV stabilisation under current disturbance No compromise in solution quality: Speeding up belief-dependent continuous partially observable Markov decision processes via adaptive multilevel simplification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1