Sergei Kucherenko, Dimitris Giamalakis, Nilay Shah
{"title":"Application of global sensitivity analysis for identification of probabilistic design spaces","authors":"Sergei Kucherenko, Dimitris Giamalakis, Nilay Shah","doi":"10.1615/int.j.uncertaintyquantification.2024051384","DOIUrl":null,"url":null,"abstract":"The design space (DS) is defined as the combination of materials and process conditions, which provides assurance of quality for a pharmaceutical product. A model-based approach to identify a probability-based DS requires costly simulations across the entire process parameter space (certain) and the uncertain model parameter space. We demonstrate that application of global sensitivity analysis (GSA) can significantly reduce model complexity and reduce computational time for identifying and quantifying DS by screening out non-important uncertain parameters. The novelty of this approach in that the usage of an indicator function which takes only binary values as a model function allows to apply a straightforward GSA based on Sobol’ sensitivity indices and to avoid using more costly Monte Carlo filtering or GSA for constrained problems. We consider an application from the chemical industry to illustrate how this formulation results in model reduction and dramatic reduction of the number of required model runs.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"141 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2024051384","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The design space (DS) is defined as the combination of materials and process conditions, which provides assurance of quality for a pharmaceutical product. A model-based approach to identify a probability-based DS requires costly simulations across the entire process parameter space (certain) and the uncertain model parameter space. We demonstrate that application of global sensitivity analysis (GSA) can significantly reduce model complexity and reduce computational time for identifying and quantifying DS by screening out non-important uncertain parameters. The novelty of this approach in that the usage of an indicator function which takes only binary values as a model function allows to apply a straightforward GSA based on Sobol’ sensitivity indices and to avoid using more costly Monte Carlo filtering or GSA for constrained problems. We consider an application from the chemical industry to illustrate how this formulation results in model reduction and dramatic reduction of the number of required model runs.
期刊介绍:
The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.