{"title":"Transformer-Based Light Field Geometry Learning for No-Reference Light Field Image Quality Assessment","authors":"Lili Lin;Siyu Bai;Mengjia Qu;Xuehui Wei;Luyao Wang;Feifan Wu;Biao Liu;Wenhui Zhou;Ercan Engin Kuruoglu","doi":"10.1109/TBC.2024.3353579","DOIUrl":null,"url":null,"abstract":"Elevating traditional 2-dimensional (2D) plane display to 4-dimensional (4D) light field display can significantly enhance users’ immersion and realism, because light field image (LFI) provides various visual cues in terms of multi-view disparity, motion disparity, and selective focus. Therefore, it is crucial to establish a light field image quality assessment (LF-IQA) model that aligns with human visual perception characteristics. However, it has always been a challenge to evaluate the perceptual quality of multiple light field visual cues simultaneously and consistently. To this end, this paper proposes a Transformer-based explicit learning of light field geometry for the no-reference light field image quality assessment. Specifically, to explicitly learn the light field epipolar geometry, we stack up light field sub-aperture images (SAIs) to form four SAI stacks according to four specific light field angular directions, and use a sub-grouping strategy to hierarchically learn the local and global light field geometric features. Then, a Transformer encoder with a spatial-shift tokenization strategy is applied to learn structure-aware light field geometric distortion representation, which is used to regress the final quality score. Evaluation experiments are carried out on three commonly used light field image quality assessment datasets: Win5-LID, NBU-LF1.0, and MPI-LFA. Experimental results demonstrate that our model outperforms state-of-the-art methods and exhibits a high correlation with human perception. The source code is publicly available at \n<uri>https://github.com/windyz77/GeoNRLFIQA</uri>\n.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 2","pages":"597-606"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10418048/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Elevating traditional 2-dimensional (2D) plane display to 4-dimensional (4D) light field display can significantly enhance users’ immersion and realism, because light field image (LFI) provides various visual cues in terms of multi-view disparity, motion disparity, and selective focus. Therefore, it is crucial to establish a light field image quality assessment (LF-IQA) model that aligns with human visual perception characteristics. However, it has always been a challenge to evaluate the perceptual quality of multiple light field visual cues simultaneously and consistently. To this end, this paper proposes a Transformer-based explicit learning of light field geometry for the no-reference light field image quality assessment. Specifically, to explicitly learn the light field epipolar geometry, we stack up light field sub-aperture images (SAIs) to form four SAI stacks according to four specific light field angular directions, and use a sub-grouping strategy to hierarchically learn the local and global light field geometric features. Then, a Transformer encoder with a spatial-shift tokenization strategy is applied to learn structure-aware light field geometric distortion representation, which is used to regress the final quality score. Evaluation experiments are carried out on three commonly used light field image quality assessment datasets: Win5-LID, NBU-LF1.0, and MPI-LFA. Experimental results demonstrate that our model outperforms state-of-the-art methods and exhibits a high correlation with human perception. The source code is publicly available at
https://github.com/windyz77/GeoNRLFIQA
.
期刊介绍:
The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”