EffiHDR: An Efficient Framework for HDRTV Reconstruction and Enhancement in UHD Systems

IF 3.2 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Broadcasting Pub Date : 2024-01-10 DOI:10.1109/TBC.2023.3345657
Hengsheng Zhang;Xueyi Zou;Guo Lu;Li Chen;Li Song;Wenjun Zhang
{"title":"EffiHDR: An Efficient Framework for HDRTV Reconstruction and Enhancement in UHD Systems","authors":"Hengsheng Zhang;Xueyi Zou;Guo Lu;Li Chen;Li Song;Wenjun Zhang","doi":"10.1109/TBC.2023.3345657","DOIUrl":null,"url":null,"abstract":"Recent advancements in SDRTV-to-HDRTV conversion have yielded impressive results in reconstructing high dynamic range television (HDRTV) videos from standard dynamic range television (SDRTV) videos. However, the practical applications of these techniques are limited for ultra-high definition (UHD) video systems due to their high computational and memory costs. In this paper, we propose EffiHDR, an efficient framework primarily operating in the downsampled space, effectively reducing the computational and memory demands. Our framework comprises a real-time SDRTV-to-HDRTV Reconstruction model and a plug-and-play HDRTV Enhancement model. The SDRTV-to-HDRTV Reconstruction model learns affine transformation coefficients instead of directly predicting output pixels to preserve high-frequency information and mitigate information loss caused by downsampling. It decomposes SDRTV-to-HDR mapping into pixel intensity-dependent and local-dependent affine transformations. The pixel intensity-dependent transformation leverages global contexts and pixel intensity conditions to transform SDRTV pixels to the HDRTV domain. The local-dependent transformation predicts affine coefficients based on local contexts, further enhancing dynamic range, local contrast, and color tone. Additionally, we introduce a plug-and-play HDRTV Enhancement model based on an efficient Transformer-based U-net, which enhances luminance and color details in challenging recovery scenarios. Experimental results demonstrate that our SDRTV-to-HDRTV Reconstruction model achieves real-time 4K conversion with impressive performance. When combined with the HDRTV Enhancement model, our approach outperforms state-of-the-art methods in performance and efficiency.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 2","pages":"620-636"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10387784/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in SDRTV-to-HDRTV conversion have yielded impressive results in reconstructing high dynamic range television (HDRTV) videos from standard dynamic range television (SDRTV) videos. However, the practical applications of these techniques are limited for ultra-high definition (UHD) video systems due to their high computational and memory costs. In this paper, we propose EffiHDR, an efficient framework primarily operating in the downsampled space, effectively reducing the computational and memory demands. Our framework comprises a real-time SDRTV-to-HDRTV Reconstruction model and a plug-and-play HDRTV Enhancement model. The SDRTV-to-HDRTV Reconstruction model learns affine transformation coefficients instead of directly predicting output pixels to preserve high-frequency information and mitigate information loss caused by downsampling. It decomposes SDRTV-to-HDR mapping into pixel intensity-dependent and local-dependent affine transformations. The pixel intensity-dependent transformation leverages global contexts and pixel intensity conditions to transform SDRTV pixels to the HDRTV domain. The local-dependent transformation predicts affine coefficients based on local contexts, further enhancing dynamic range, local contrast, and color tone. Additionally, we introduce a plug-and-play HDRTV Enhancement model based on an efficient Transformer-based U-net, which enhances luminance and color details in challenging recovery scenarios. Experimental results demonstrate that our SDRTV-to-HDRTV Reconstruction model achieves real-time 4K conversion with impressive performance. When combined with the HDRTV Enhancement model, our approach outperforms state-of-the-art methods in performance and efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EffiHDR:超高清系统中 HDRTV 重建和增强的高效框架
SDRTV 到 HDRTV 转换技术的最新进展在从标准动态范围电视(SDRTV)视频重建高动态范围电视(HDRTV)视频方面取得了令人瞩目的成果。然而,由于计算和内存成本较高,这些技术在超高清(UHD)视频系统中的实际应用受到了限制。在本文中,我们提出了 EffiHDR,这是一种主要在降采样空间运行的高效框架,可有效降低计算和内存需求。我们的框架包括一个实时 SDRTV 转 HDRTV 重建模型和一个即插即用的 HDRTV 增强模型。SDRTV 到 HDRTV 重构模型学习仿射变换系数,而不是直接预测输出像素,以保留高频信息并减少下采样造成的信息损失。它将 SDRTV 到 HDR 映射分解为依赖像素强度的仿射变换和依赖局部的仿射变换。像素强度相关变换利用全局上下文和像素强度条件将 SDRTV 像素变换到 HDRTV 域。局部相关变换根据局部背景预测仿射系数,进一步增强动态范围、局部对比度和色调。此外,我们还引入了基于高效变换器 U 网的即插即用 HDRTV 增强模型,可在具有挑战性的恢复场景中增强亮度和色彩细节。实验结果表明,我们的 SDRTV 转 HDRTV 重建模型实现了实时 4K 转换,性能令人印象深刻。当与 HDRTV 增强模型相结合时,我们的方法在性能和效率上都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Broadcasting
IEEE Transactions on Broadcasting 工程技术-电信学
CiteScore
9.40
自引率
31.10%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”
期刊最新文献
Front Cover Table of Contents Table of Contents IEEE Transactions on Broadcasting Information for Authors IEEE Transactions on Broadcasting Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1