CaT-GNN: Enhancing Credit Card Fraud Detection via Causal Temporal Graph Neural Networks

Yifan Duan, Guibin Zhang, Shilong Wang, Xiaojiang Peng, Wang Ziqi, Junyuan Mao, Hao Wu, Xinke Jiang, Kun Wang
{"title":"CaT-GNN: Enhancing Credit Card Fraud Detection via Causal Temporal Graph Neural Networks","authors":"Yifan Duan, Guibin Zhang, Shilong Wang, Xiaojiang Peng, Wang Ziqi, Junyuan Mao, Hao Wu, Xinke Jiang, Kun Wang","doi":"arxiv-2402.14708","DOIUrl":null,"url":null,"abstract":"Credit card fraud poses a significant threat to the economy. While Graph\nNeural Network (GNN)-based fraud detection methods perform well, they often\noverlook the causal effect of a node's local structure on predictions. This\npaper introduces a novel method for credit card fraud detection, the\n\\textbf{\\underline{Ca}}usal \\textbf{\\underline{T}}emporal\n\\textbf{\\underline{G}}raph \\textbf{\\underline{N}}eural \\textbf{N}etwork\n(CaT-GNN), which leverages causal invariant learning to reveal inherent\ncorrelations within transaction data. By decomposing the problem into discovery\nand intervention phases, CaT-GNN identifies causal nodes within the transaction\ngraph and applies a causal mixup strategy to enhance the model's robustness and\ninterpretability. CaT-GNN consists of two key components: Causal-Inspector and\nCausal-Intervener. The Causal-Inspector utilizes attention weights in the\ntemporal attention mechanism to identify causal and environment nodes without\nintroducing additional parameters. Subsequently, the Causal-Intervener performs\na causal mixup enhancement on environment nodes based on the set of nodes.\nEvaluated on three datasets, including a private financial dataset and two\npublic datasets, CaT-GNN demonstrates superior performance over existing\nstate-of-the-art methods. Our findings highlight the potential of integrating\ncausal reasoning with graph neural networks to improve fraud detection\ncapabilities in financial transactions.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.14708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Credit card fraud poses a significant threat to the economy. While Graph Neural Network (GNN)-based fraud detection methods perform well, they often overlook the causal effect of a node's local structure on predictions. This paper introduces a novel method for credit card fraud detection, the \textbf{\underline{Ca}}usal \textbf{\underline{T}}emporal \textbf{\underline{G}}raph \textbf{\underline{N}}eural \textbf{N}etwork (CaT-GNN), which leverages causal invariant learning to reveal inherent correlations within transaction data. By decomposing the problem into discovery and intervention phases, CaT-GNN identifies causal nodes within the transaction graph and applies a causal mixup strategy to enhance the model's robustness and interpretability. CaT-GNN consists of two key components: Causal-Inspector and Causal-Intervener. The Causal-Inspector utilizes attention weights in the temporal attention mechanism to identify causal and environment nodes without introducing additional parameters. Subsequently, the Causal-Intervener performs a causal mixup enhancement on environment nodes based on the set of nodes. Evaluated on three datasets, including a private financial dataset and two public datasets, CaT-GNN demonstrates superior performance over existing state-of-the-art methods. Our findings highlight the potential of integrating causal reasoning with graph neural networks to improve fraud detection capabilities in financial transactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CaT-GNN:通过因果时序图神经网络加强信用卡欺诈检测
信用卡欺诈对经济构成了重大威胁。虽然基于图形神经网络(GNN)的欺诈检测方法性能良好,但它们往往忽略了节点的局部结构对预测的因果影响。本文介绍了一种新颖的信用卡欺诈检测方法--因果不变学习(CaT-GNN),它利用因果不变学习来揭示交易数据中固有的相关性。通过将问题分解为发现阶段和干预阶段,CaT-GNN 可识别交易图中的因果节点,并应用因果混合策略来增强模型的鲁棒性和可解释性。CaT-GNN 由两个关键组件组成:因果检测器(Causal-Inspector)和因果干预器(Causal-Intervener)。因果检测器利用时态注意力机制中的注意力权重来识别因果节点和环境节点,而无需引入额外参数。在三个数据集(包括一个私人金融数据集和两个公共数据集)上进行的评估显示,CaT-GNN 的性能优于现有的最先进方法。我们的研究结果凸显了将因果推理与图神经网络相结合以提高金融交易欺诈检测能力的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Macroscopic properties of equity markets: stylized facts and portfolio performance Tuning into Climate Risks: Extracting Innovation from TV News for Clean Energy Firms On the macroeconomic fundamentals of long-term volatilities and dynamic correlations in COMEX copper futures Market information of the fractional stochastic regularity model Critical Dynamics of Random Surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1