Thuan N.-T. Ho, Trong-Phuoc Nguyen, Gia Toai Truong
{"title":"Concrete Spalling Identification and Fire Resistance Prediction for Fired RC Columns Using Machine Learning-Based Approaches","authors":"Thuan N.-T. Ho, Trong-Phuoc Nguyen, Gia Toai Truong","doi":"10.1007/s10694-024-01550-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims at utilizing machine learning (ML) in predicting the fire resistance and spalling degree of reinforced concrete (RC) columns with improved accuracy and reliability. A database with 119 test specimens was created for the development of ML-based regression models, and a database with 101 test specimens was created for the development of ML-based classification models. Six ML algorithms—support vector machine (SVM), random forest (RF), multilayer perceptron (MLP), extreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), and light gradient boosting machine (LightGBM). The hyperparameters of the ML-based models were optimized through Bayes optimization search (BayesSearchCV) with ten-fold cross-validation. The results indicated that the AdaBoost not only accurately predicted the spalling degree of RC columns with an accuracy of 87%, but also performed best in predicting the fire resistance of RC columns with <i>R</i><sup>2</sup> = 0.96 and RMSE = 16.58. The AdaBoost model achieved high accuracy without significant bias, surpassing existing design equations. SHAP method was utilized to produce global explanations for the predictions. The results revealed that concrete compressive strength, loading ratio, slenderness ratio, and column width were the most critical features for spalling degree identification. Meanwhile, those were slenderness ratio, concrete cover, loading ratio, part of the fired column, and longitudinal reinforcement for fire resistance prediction. The parametric study demonstrated that the fire resistance of RC columns is positively affected by only concrete cover.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 3","pages":"1823 - 1866"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-024-01550-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims at utilizing machine learning (ML) in predicting the fire resistance and spalling degree of reinforced concrete (RC) columns with improved accuracy and reliability. A database with 119 test specimens was created for the development of ML-based regression models, and a database with 101 test specimens was created for the development of ML-based classification models. Six ML algorithms—support vector machine (SVM), random forest (RF), multilayer perceptron (MLP), extreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), and light gradient boosting machine (LightGBM). The hyperparameters of the ML-based models were optimized through Bayes optimization search (BayesSearchCV) with ten-fold cross-validation. The results indicated that the AdaBoost not only accurately predicted the spalling degree of RC columns with an accuracy of 87%, but also performed best in predicting the fire resistance of RC columns with R2 = 0.96 and RMSE = 16.58. The AdaBoost model achieved high accuracy without significant bias, surpassing existing design equations. SHAP method was utilized to produce global explanations for the predictions. The results revealed that concrete compressive strength, loading ratio, slenderness ratio, and column width were the most critical features for spalling degree identification. Meanwhile, those were slenderness ratio, concrete cover, loading ratio, part of the fired column, and longitudinal reinforcement for fire resistance prediction. The parametric study demonstrated that the fire resistance of RC columns is positively affected by only concrete cover.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.