{"title":"A shift-splitting Jacobi-gradient iterative algorithm for solving the matrix equation A𝒱−𝒱‾B=C","authors":"Ahmed M. E. Bayoumi","doi":"10.1002/oca.3112","DOIUrl":null,"url":null,"abstract":"To improve the convergence of the gradient iterative (GI) algorithm and the Jacobi-gradient iterative (JGI) algorithm [Bayoumi, <i>Appl Math Inf Sci</i>, 2021], a shift-splitting Jacobi-gradient iterative (SSJGI) algorithm for solving the matrix equation <mjx-container aria-label=\"upper A script upper V minus script upper V overbar upper B equals upper C\" ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-mrow data-semantic-children=\"13,8\" data-semantic-content=\"7\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"upper A script upper V minus script upper V overbar upper B equals upper C\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic-children=\"10,12\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"subtraction\" data-semantic-type=\"infixop\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"9\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"13\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"4\" space=\"4\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,6\" data-semantic-content=\"11\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mover data-semantic-children=\"3,4\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.2em; padding-left: 0.171em; margin-bottom: -0.385em;\"><mjx-mo data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"overaccent\" data-semantic-type=\"punctuation\" size=\"s\"><mjx-stretchy-h style=\"width: 1.202em;\"><mjx-ext><mjx-c></mjx-c></mjx-ext></mjx-stretchy-h></mjx-mo></mjx-over><mjx-base><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"12\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"14\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/4de835db-dcf2-4eeb-acc4-9a5ccf422c4e/oca3112-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow data-semantic-=\"\" data-semantic-children=\"13,8\" data-semantic-content=\"7\" data-semantic-role=\"equality\" data-semantic-speech=\"upper A script upper V minus script upper V overbar upper B equals upper C\" data-semantic-type=\"relseq\"><mrow data-semantic-=\"\" data-semantic-children=\"10,12\" data-semantic-content=\"2\" data-semantic-parent=\"14\" data-semantic-role=\"subtraction\" data-semantic-type=\"infixop\"><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"9\" data-semantic-parent=\"13\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">A</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">𝒱</mi></mrow><mo data-semantic-=\"\" data-semantic-operator=\"infixop,−\" data-semantic-parent=\"13\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,6\" data-semantic-content=\"11\" data-semantic-parent=\"13\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mover accent=\"false\" data-semantic-=\"\" data-semantic-children=\"3,4\" data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">𝒱</mi><mo data-semantic-=\"\" data-semantic-parent=\"5\" data-semantic-role=\"overaccent\" data-semantic-type=\"punctuation\">‾</mo></mover><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"12\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">B</mi></mrow></mrow><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"14\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">C</mi></mrow></math></mjx-assistive-mml></mjx-container> is presented in this paper, which is based on the splitting of the coefficient matrices. The proposed algorithm converges to the exact solution for any initial value with some conditions. To demonstrate the effectiveness of the SSJGI algorithm and to compare it to the GI algorithm and the JGI algorithm [Bayoumi, <i>Appl Math Inf Sci</i>, 2021], numerical examples are provided.","PeriodicalId":501055,"journal":{"name":"Optimal Control Applications and Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the convergence of the gradient iterative (GI) algorithm and the Jacobi-gradient iterative (JGI) algorithm [Bayoumi, Appl Math Inf Sci, 2021], a shift-splitting Jacobi-gradient iterative (SSJGI) algorithm for solving the matrix equation is presented in this paper, which is based on the splitting of the coefficient matrices. The proposed algorithm converges to the exact solution for any initial value with some conditions. To demonstrate the effectiveness of the SSJGI algorithm and to compare it to the GI algorithm and the JGI algorithm [Bayoumi, Appl Math Inf Sci, 2021], numerical examples are provided.