Recent advances and future perspectives of carbon-based nanomaterials for environmental remediation

IF 1.5 4区 工程技术 Q3 ENGINEERING, CHEMICAL Brazilian Journal of Chemical Engineering Pub Date : 2024-02-24 DOI:10.1007/s43153-024-00439-x
Abdul Sattar Jatoi, Jawad Ahmed, Afaque Ahmed Bhutto, Albert Selvakumar Jeyapaul
{"title":"Recent advances and future perspectives of carbon-based nanomaterials for environmental remediation","authors":"Abdul Sattar Jatoi, Jawad Ahmed, Afaque Ahmed Bhutto, Albert Selvakumar Jeyapaul","doi":"10.1007/s43153-024-00439-x","DOIUrl":null,"url":null,"abstract":"<p>All species on this planet, both living and non-living, require water. It is well known that the availability of clean water sources is dwindling and that the rapid development of industry and technology has increased the number of hazardous effluents released into the environment. Before being released into the environment, industrial, agricultural, and municipal wastewater must be treated to remove dangerous contaminants such as organic colours, pharmaceutical wastes, inorganic compounds, and heavy metal ions. They pose major threats to human health and can pollute our environment if not controlled. Membrane filtration is a tried-and-true technique for removing germs and numerous hazardous substances from water. Carbon nanoparticles are used in wastewater treatment because of the promising surface area of sorbents. With the growth of nanotechnology, carbon nanomaterials (CNM) are being created and used in membrane filtration (MF) for effluent treatment before being terminated. To remove wastewater contaminants, this paper investigates using CNMs such as fullerenes, graphene’s, and CNTs. By examining sorption rate, selectivity, permeability, antimicrobial disinfectant properties, and environmental compatibility, we concentrate on these CNM-based membranes and this approach due to its attributes and utilization and how they can improve the performance of the frequently used membrane filtration system.</p>","PeriodicalId":9194,"journal":{"name":"Brazilian Journal of Chemical Engineering","volume":"33 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00439-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

All species on this planet, both living and non-living, require water. It is well known that the availability of clean water sources is dwindling and that the rapid development of industry and technology has increased the number of hazardous effluents released into the environment. Before being released into the environment, industrial, agricultural, and municipal wastewater must be treated to remove dangerous contaminants such as organic colours, pharmaceutical wastes, inorganic compounds, and heavy metal ions. They pose major threats to human health and can pollute our environment if not controlled. Membrane filtration is a tried-and-true technique for removing germs and numerous hazardous substances from water. Carbon nanoparticles are used in wastewater treatment because of the promising surface area of sorbents. With the growth of nanotechnology, carbon nanomaterials (CNM) are being created and used in membrane filtration (MF) for effluent treatment before being terminated. To remove wastewater contaminants, this paper investigates using CNMs such as fullerenes, graphene’s, and CNTs. By examining sorption rate, selectivity, permeability, antimicrobial disinfectant properties, and environmental compatibility, we concentrate on these CNM-based membranes and this approach due to its attributes and utilization and how they can improve the performance of the frequently used membrane filtration system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于环境修复的碳基纳米材料的最新进展和未来展望
地球上的所有物种,无论是生物还是非生物,都需要水。众所周知,清洁水源的供应正在减少,工业和技术的快速发展增加了排放到环境中的有害废水的数量。在排放到环境中之前,工业、农业和市政废水必须经过处理,以去除危险污染物,如有机色素、医药废物、无机化合物和重金属离子。这些污染物对人类健康构成重大威胁,如果不加以控制,还会污染环境。膜过滤是一种屡试不爽的技术,可以去除水中的病菌和多种有害物质。由于吸附剂具有良好的表面积,纳米碳粒子被用于废水处理。随着纳米技术的发展,碳纳米材料(CNM)正在被制造出来,并被用于膜过滤(MF)的废水处理中。为去除废水污染物,本文研究了富勒烯、石墨烯和碳纳米管等碳纳米材料。通过研究吸附率、选择性、渗透性、抗菌消毒特性和环境兼容性,我们重点探讨了这些基于 CNM 的膜和这种方法的特性和利用,以及它们如何改善常用膜过滤系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brazilian Journal of Chemical Engineering
Brazilian Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
2.50
自引率
0.00%
发文量
84
审稿时长
6.8 months
期刊介绍: The Brazilian Journal of Chemical Engineering is a quarterly publication of the Associação Brasileira de Engenharia Química (Brazilian Society of Chemical Engineering - ABEQ) aiming at publishing papers reporting on basic and applied research and innovation in the field of chemical engineering and related areas.
期刊最新文献
C4 hydrocarbons to value-added chemicals over Keggin-type heteropolyacids: structure-properties, reaction parameters, and mechanisms Utilization of blue light-emitting diodes in Ensifer meliloti cultivation for enhanced production of antioxidant biopolymers Correlation of the solubility of isoniazid in some aqueous cosolvent mixtures using different mathematical models Doehlert matrix-based optimization of degradation of Rhodamine B in a swirling flow photolytic reactor operated in recirculation mode Application of DieselB10 formulations with short-chain alcohols in diesel cycle engines: phase equilibrium, physicochemical and thermodynamic properties and power curves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1