Abdul Sattar Jatoi, Jawad Ahmed, Afaque Ahmed Bhutto, Albert Selvakumar Jeyapaul
{"title":"Recent advances and future perspectives of carbon-based nanomaterials for environmental remediation","authors":"Abdul Sattar Jatoi, Jawad Ahmed, Afaque Ahmed Bhutto, Albert Selvakumar Jeyapaul","doi":"10.1007/s43153-024-00439-x","DOIUrl":null,"url":null,"abstract":"<p>All species on this planet, both living and non-living, require water. It is well known that the availability of clean water sources is dwindling and that the rapid development of industry and technology has increased the number of hazardous effluents released into the environment. Before being released into the environment, industrial, agricultural, and municipal wastewater must be treated to remove dangerous contaminants such as organic colours, pharmaceutical wastes, inorganic compounds, and heavy metal ions. They pose major threats to human health and can pollute our environment if not controlled. Membrane filtration is a tried-and-true technique for removing germs and numerous hazardous substances from water. Carbon nanoparticles are used in wastewater treatment because of the promising surface area of sorbents. With the growth of nanotechnology, carbon nanomaterials (CNM) are being created and used in membrane filtration (MF) for effluent treatment before being terminated. To remove wastewater contaminants, this paper investigates using CNMs such as fullerenes, graphene’s, and CNTs. By examining sorption rate, selectivity, permeability, antimicrobial disinfectant properties, and environmental compatibility, we concentrate on these CNM-based membranes and this approach due to its attributes and utilization and how they can improve the performance of the frequently used membrane filtration system.</p>","PeriodicalId":9194,"journal":{"name":"Brazilian Journal of Chemical Engineering","volume":"33 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00439-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
All species on this planet, both living and non-living, require water. It is well known that the availability of clean water sources is dwindling and that the rapid development of industry and technology has increased the number of hazardous effluents released into the environment. Before being released into the environment, industrial, agricultural, and municipal wastewater must be treated to remove dangerous contaminants such as organic colours, pharmaceutical wastes, inorganic compounds, and heavy metal ions. They pose major threats to human health and can pollute our environment if not controlled. Membrane filtration is a tried-and-true technique for removing germs and numerous hazardous substances from water. Carbon nanoparticles are used in wastewater treatment because of the promising surface area of sorbents. With the growth of nanotechnology, carbon nanomaterials (CNM) are being created and used in membrane filtration (MF) for effluent treatment before being terminated. To remove wastewater contaminants, this paper investigates using CNMs such as fullerenes, graphene’s, and CNTs. By examining sorption rate, selectivity, permeability, antimicrobial disinfectant properties, and environmental compatibility, we concentrate on these CNM-based membranes and this approach due to its attributes and utilization and how they can improve the performance of the frequently used membrane filtration system.
期刊介绍:
The Brazilian Journal of Chemical Engineering is a quarterly publication of the Associação Brasileira de Engenharia Química (Brazilian Society of Chemical Engineering - ABEQ) aiming at publishing papers reporting on basic and applied research and innovation in the field of chemical engineering and related areas.