BatOpt: Optimizing GPU-Based Deep Learning Inference Using Dynamic Batch Processing

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Cloud Computing Pub Date : 2024-01-08 DOI:10.1109/TCC.2024.3350561
Deyu Zhang;Yunzhen Luo;Yaobo Wang;Xiaoyan Kui;Ju Ren
{"title":"BatOpt: Optimizing GPU-Based Deep Learning Inference Using Dynamic Batch Processing","authors":"Deyu Zhang;Yunzhen Luo;Yaobo Wang;Xiaoyan Kui;Ju Ren","doi":"10.1109/TCC.2024.3350561","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) has been applied in billions of mobile devices due to its astonishing performance in image, text, and audio processing. However, limited by the computing capability of mobile devices, a large amount of DL inference tasks need to be offloaded to edge or cloud servers, which makes powerful GPU servers are struggling to ensure the quality of service(QoS). To better utilize the highly parallel computing architecture of GPU to improve the QoS, we propose BatOpt, a framework that uses dynamic batch processing to strike a good balance between service latency and GPU memory usage in DL inference services. Specifically, BatOpt innovatively models the DL inference service as a \n<inline-formula><tex-math>$M/G(a,b)/1/N$</tex-math></inline-formula>\n queue, with the consideration of stochastic task arrivals, which enables it to predict the service latency accurately in different system states. Furthermore, we propose an optimization algorithm to trade off the service latency and GPU memory usage in different system states by analyzing the queueing model. We have implemented BatOpt on Pytorch and evaluated it on an RTX 2080 GPU using real DL models. BatOpt brings up to 31x and 4.3x times performance boost in terms of service latency, compared to single-input and fixed-batch-size strategies, respectively. And BatOpt's maximum GPU memory usage is only 0.3x that of greedy-dynamic-batch-size strategy on the premise of the same service latency.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 1","pages":"174-185"},"PeriodicalIF":5.3000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10382642/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning (DL) has been applied in billions of mobile devices due to its astonishing performance in image, text, and audio processing. However, limited by the computing capability of mobile devices, a large amount of DL inference tasks need to be offloaded to edge or cloud servers, which makes powerful GPU servers are struggling to ensure the quality of service(QoS). To better utilize the highly parallel computing architecture of GPU to improve the QoS, we propose BatOpt, a framework that uses dynamic batch processing to strike a good balance between service latency and GPU memory usage in DL inference services. Specifically, BatOpt innovatively models the DL inference service as a $M/G(a,b)/1/N$ queue, with the consideration of stochastic task arrivals, which enables it to predict the service latency accurately in different system states. Furthermore, we propose an optimization algorithm to trade off the service latency and GPU memory usage in different system states by analyzing the queueing model. We have implemented BatOpt on Pytorch and evaluated it on an RTX 2080 GPU using real DL models. BatOpt brings up to 31x and 4.3x times performance boost in terms of service latency, compared to single-input and fixed-batch-size strategies, respectively. And BatOpt's maximum GPU memory usage is only 0.3x that of greedy-dynamic-batch-size strategy on the premise of the same service latency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BatOpt:使用动态批处理优化基于 GPU 的深度学习推理
深度学习(DL)因其在图像、文本和音频处理方面的惊人性能,已被应用于数十亿台移动设备。然而,受限于移动设备的计算能力,大量的深度学习推理任务需要卸载到边缘或云服务器上,这使得功能强大的 GPU 服务器难以保证服务质量(QoS)。为了更好地利用GPU的高度并行计算架构来提高服务质量,我们提出了BatOpt,一个利用动态批处理在DL推理服务中实现服务延迟和GPU内存使用之间良好平衡的框架。具体来说,BatOpt 创新性地将 DL 推理服务建模为 $M/G(a,b)/1/N$ 队列,并考虑到随机任务到达,从而能够准确预测不同系统状态下的服务延迟。此外,我们还提出了一种优化算法,通过分析队列模型来权衡不同系统状态下的服务延迟和 GPU 内存使用量。我们在 Pytorch 上实现了 BatOpt,并使用真实的 DL 模型在 RTX 2080 GPU 上进行了评估。与单输入和固定批量大小策略相比,BatOpt 在服务延迟方面的性能分别提高了 31 倍和 4.3 倍。在服务延迟相同的前提下,BatOpt 的最大 GPU 内存使用量仅为贪婪动态批量大小策略的 0.3 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
期刊最新文献
COCSN: A Multi-Tiered Cascaded Optical Circuit Switching Network for Data Center Aggregate Monitoring for Geo-Distributed Kubernetes Cluster Federations Group Formation and Sampling in Group-Based Hierarchical Federated Learning HEXO: Offloading Long-Running Compute- and Memory-Intensive Workloads on Low-Cost, Low-Power Embedded Systems Joint Offloading and Resource Allocation for Collaborative Cloud Computing With Dependent Subtask Scheduling on Multi-Core Server
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1