Svenja J. Müller, Wiebke Wessels, Sara Driscoll, Evgeny A. Pakhomov, Lutz Auerswald, Katharina Michael, Bettina Meyer
{"title":"A temperature-controlled, circular maintenance system for studying growth and development of pelagic tunicates (salps)","authors":"Svenja J. Müller, Wiebke Wessels, Sara Driscoll, Evgeny A. Pakhomov, Lutz Auerswald, Katharina Michael, Bettina Meyer","doi":"10.1002/lom3.10605","DOIUrl":null,"url":null,"abstract":"<p>Salps have attracted attention as zooplankton organisms that may be able to expand their habitat range and increase their ecological importance in the face of ongoing global warming. Due to their gelatinous nature, unique feeding strategy, and reproductive ecology such changes could have profound impacts on regional marine ecosystems. While their role in the regional carbon cycle is receiving attention, our knowledge of their physiology and life cycle is still limited. This knowledge gap is mainly due to their fragile gelatinous nature, which makes it difficult to capture and maintain intact specimen in the laboratory. We present here a modified kreisel tank system that has been tested onboard a research vessel with the Southern Ocean salp <i>Salpa thompsoni</i> and at a research station with <i>Salpa fusiformis</i> and <i>Thalia democratica</i> from the Mediterranean Sea. Successful maintenance over days to weeks allowed us to obtain relative growth and developmental rates comparable to in situ field samples of <i>S. thompsoni</i> and <i>S. fusiformis</i>, and provided insights into previously unknown features of their life cycle (e.g., testes development). Our results show that traditional methods of estimating growth, such as cohort analysis, may lead to a general overestimation of growth rates and neglect individual strategies (e.g., shrinkage), which can affect the results and conclusions drawn from population dynamic models. By providing a starting point for the successful maintenance of different species, comparable experiments on the physiology of salps is made possible. This will contribute to refining model parameters and improving the reliability of the predictions.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":"22 5","pages":"281-294"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10605","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Methods","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10605","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Salps have attracted attention as zooplankton organisms that may be able to expand their habitat range and increase their ecological importance in the face of ongoing global warming. Due to their gelatinous nature, unique feeding strategy, and reproductive ecology such changes could have profound impacts on regional marine ecosystems. While their role in the regional carbon cycle is receiving attention, our knowledge of their physiology and life cycle is still limited. This knowledge gap is mainly due to their fragile gelatinous nature, which makes it difficult to capture and maintain intact specimen in the laboratory. We present here a modified kreisel tank system that has been tested onboard a research vessel with the Southern Ocean salp Salpa thompsoni and at a research station with Salpa fusiformis and Thalia democratica from the Mediterranean Sea. Successful maintenance over days to weeks allowed us to obtain relative growth and developmental rates comparable to in situ field samples of S. thompsoni and S. fusiformis, and provided insights into previously unknown features of their life cycle (e.g., testes development). Our results show that traditional methods of estimating growth, such as cohort analysis, may lead to a general overestimation of growth rates and neglect individual strategies (e.g., shrinkage), which can affect the results and conclusions drawn from population dynamic models. By providing a starting point for the successful maintenance of different species, comparable experiments on the physiology of salps is made possible. This will contribute to refining model parameters and improving the reliability of the predictions.
期刊介绍:
Limnology and Oceanography: Methods (ISSN 1541-5856) is a companion to ASLO''s top-rated journal Limnology and Oceanography, and articles are held to the same high standards. In order to provide the most rapid publication consistent with high standards, Limnology and Oceanography: Methods appears in electronic format only, and the entire submission and review system is online. Articles are posted as soon as they are accepted and formatted for publication.
Limnology and Oceanography: Methods will consider manuscripts whose primary focus is methodological, and that deal with problems in the aquatic sciences. Manuscripts may present new measurement equipment, techniques for analyzing observations or samples, methods for understanding and interpreting information, analyses of metadata to examine the effectiveness of approaches, invited and contributed reviews and syntheses, and techniques for communicating and teaching in the aquatic sciences.