{"title":"Toward a Real-Time TCP SYN Flood DDoS Mitigation Using Adaptive Neuro-Fuzzy Classifier and SDN Assistance in Fog Computing","authors":"Radjaa Bensaid, Nabila Labraoui, Ado Adamou Abba Ari, Leandros Maglaras, Hafida Saidi, Ahmed Mahmoud Abdu Lwahhab, Sihem Benfriha","doi":"10.1155/2024/6651584","DOIUrl":null,"url":null,"abstract":"The growth of the Internet of Things (IoT) has recently impacted our daily lives in many ways. As a result, a massive volume of data are generated and need to be processed in a short period of time. Therefore, a combination of computing models such as cloud computing is necessary. The main disadvantage of the cloud platform is its high latency due to the centralized mainframe. Fortunately, a distributed paradigm known as fog computing has emerged to overcome this problem, offering cloud services with low latency and high-access bandwidth to support many IoT application scenarios. However, attacks against fog servers can take many forms, such as distributed denial of service (DDoS) attacks that severely affect the reliability and availability of fog services. To address these challenges, we propose mitigation of fog computing-based SYN Flood DDoS attacks using an adaptive neuro-fuzzy inference system (ANFIS) and software defined networking (SDN) assistance (FASA). The simulation results show that the FASA system outperforms other algorithms in terms of accuracy, precision, recall, and <i>F</i>1-score. This shows how crucial our system is for detecting and mitigating TCP-SYN floods and DDoS attacks.","PeriodicalId":49554,"journal":{"name":"Security and Communication Networks","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security and Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2024/6651584","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
The growth of the Internet of Things (IoT) has recently impacted our daily lives in many ways. As a result, a massive volume of data are generated and need to be processed in a short period of time. Therefore, a combination of computing models such as cloud computing is necessary. The main disadvantage of the cloud platform is its high latency due to the centralized mainframe. Fortunately, a distributed paradigm known as fog computing has emerged to overcome this problem, offering cloud services with low latency and high-access bandwidth to support many IoT application scenarios. However, attacks against fog servers can take many forms, such as distributed denial of service (DDoS) attacks that severely affect the reliability and availability of fog services. To address these challenges, we propose mitigation of fog computing-based SYN Flood DDoS attacks using an adaptive neuro-fuzzy inference system (ANFIS) and software defined networking (SDN) assistance (FASA). The simulation results show that the FASA system outperforms other algorithms in terms of accuracy, precision, recall, and F1-score. This shows how crucial our system is for detecting and mitigating TCP-SYN floods and DDoS attacks.
期刊介绍:
Security and Communication Networks is an international journal publishing original research and review papers on all security areas including network security, cryptography, cyber security, etc. The emphasis is on security protocols, approaches and techniques applied to all types of information and communication networks, including wired, wireless and optical transmission platforms.
The journal provides a prestigious forum for the R&D community in academia and industry working at the inter-disciplinary nexus of next generation communications technologies for security implementations in all network layers.
Answering the highly practical and commercial importance of network security R&D, submissions of applications-oriented papers describing case studies and simulations are encouraged as well as research analysis-type papers.