Data and Model Poisoning Backdoor Attacks on Wireless Federated Learning, and the Defense Mechanisms: A Comprehensive Survey

IF 34.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Communications Surveys and Tutorials Pub Date : 2024-02-07 DOI:10.1109/COMST.2024.3361451
Yichen Wan;Youyang Qu;Wei Ni;Yong Xiang;Longxiang Gao;Ekram Hossain
{"title":"Data and Model Poisoning Backdoor Attacks on Wireless Federated Learning, and the Defense Mechanisms: A Comprehensive Survey","authors":"Yichen Wan;Youyang Qu;Wei Ni;Yong Xiang;Longxiang Gao;Ekram Hossain","doi":"10.1109/COMST.2024.3361451","DOIUrl":null,"url":null,"abstract":"Due to the greatly improved capabilities of devices, massive data, and increasing concern about data privacy, Federated Learning (FL) has been increasingly considered for applications to wireless communication networks (WCNs). Wireless FL (WFL) is a distributed method of training a global deep learning model in which a large number of participants each train a local model on their training datasets and then upload the local model updates to a central server. However, in general, non-independent and identically distributed (non-IID) data of WCNs raises concerns about robustness, as a malicious participant could potentially inject a “backdoor” into the global model by uploading poisoned data or models over WCN. This could cause the model to misclassify malicious inputs as a specific target class while behaving normally with benign inputs. This survey provides a comprehensive review of the latest backdoor attacks and defense mechanisms. It classifies them according to their targets (data poisoning or model poisoning), the attack phase (local data collection, training, or aggregation), and defense stage (local training, before aggregation, during aggregation, or after aggregation). The strengths and limitations of existing attack strategies and defense mechanisms are analyzed in detail. Comparisons of existing attack methods and defense designs are carried out, pointing to noteworthy findings, open challenges, and potential future research directions related to security and privacy of WFL.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":null,"pages":null},"PeriodicalIF":34.4000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10423783/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the greatly improved capabilities of devices, massive data, and increasing concern about data privacy, Federated Learning (FL) has been increasingly considered for applications to wireless communication networks (WCNs). Wireless FL (WFL) is a distributed method of training a global deep learning model in which a large number of participants each train a local model on their training datasets and then upload the local model updates to a central server. However, in general, non-independent and identically distributed (non-IID) data of WCNs raises concerns about robustness, as a malicious participant could potentially inject a “backdoor” into the global model by uploading poisoned data or models over WCN. This could cause the model to misclassify malicious inputs as a specific target class while behaving normally with benign inputs. This survey provides a comprehensive review of the latest backdoor attacks and defense mechanisms. It classifies them according to their targets (data poisoning or model poisoning), the attack phase (local data collection, training, or aggregation), and defense stage (local training, before aggregation, during aggregation, or after aggregation). The strengths and limitations of existing attack strategies and defense mechanisms are analyzed in detail. Comparisons of existing attack methods and defense designs are carried out, pointing to noteworthy findings, open challenges, and potential future research directions related to security and privacy of WFL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线联合学习的数据和模型中毒后门攻击及防御机制:全面调查
由于设备性能的大幅提升、海量数据以及对数据隐私的日益关注,人们越来越多地考虑将联合学习(FL)应用于无线通信网络(WCN)。无线联合学习(WFL)是一种训练全局深度学习模型的分布式方法,在这种方法中,大量参与者各自在其训练数据集上训练本地模型,然后将本地模型更新上传到中央服务器。然而,一般来说,WCN 的非独立和同分布(non-IID)数据会引发对鲁棒性的担忧,因为恶意参与者有可能通过 WCN 上传有毒数据或模型,向全局模型注入 "后门"。这可能导致模型将恶意输入错误分类为特定目标类别,而对良性输入则表现正常。本调查全面回顾了最新的后门攻击和防御机制。它根据目标(数据中毒或模型中毒)、攻击阶段(本地数据收集、训练或聚合)和防御阶段(本地训练、聚合前、聚合中或聚合后)对它们进行了分类。详细分析了现有攻击策略和防御机制的优势和局限性。比较了现有的攻击方法和防御设计,指出了与 WFL 的安全性和隐私性相关的值得注意的发现、公开挑战和潜在的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Communications Surveys and Tutorials
IEEE Communications Surveys and Tutorials COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
80.20
自引率
2.50%
发文量
84
审稿时长
6 months
期刊介绍: IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues. A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.
期刊最新文献
Table of Contents Editorial: Third Quarter 2024 IEEE Communications Surveys and Tutorials Evolution of RAN Architectures Toward 6G: Motivation, Development, and Enabling Technologies A Human-Centric Metaverse Enabled by Brain-Computer Interface: A Survey Wireless Access for V2X Communications: Research, Challenges and Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1