{"title":"Post-Quantum Blockchain Security for the Internet of Things: Survey and Research Directions","authors":"Hadi Gharavi;Jorge Granjal;Edmundo Monteiro","doi":"10.1109/COMST.2024.3355222","DOIUrl":null,"url":null,"abstract":"Blockchain is becoming increasingly popular in the business and academic communities because it can provide security for a wide range of applications. Therefore, researchers have been motivated to exploit blockchain characteristics, such as data immutability, transparency, and resistance to single-point failures in the Internet of Things (IoT), to increase the security of the IoT ecosystem. However, many existing blockchains rely on classical cryptosystems such as the Elliptic Curve Digital Signature Algorithm (ECDSA) and SHA-256 to validate transactions, which will be compromised by Shor and Grover’s algorithms running on quantum computers in the foreseeable future. Post-Quantum Cryptosystems (PQC) are an innovative solution for resisting quantum attacks that can be applied to blockchains, resulting in the creation of a new type of blockchain known as Post-Quantum Blockchains (PQB). In this survey, we will look at the different types of PQC and their recent standard primitives to determine whether they can enable security for blockchain-based IoT applications. It also briefly introduces blockchain and outlines recent blockchain-IoT application proposals. To the best of our knowledge, this is the first study to examine how post-quantum blockchains are being developed and how they can be used to create security mechanisms for different IoT applications. Finally, this study explores the main challenges and potential research directions that arise from integrating quantum-resistance blockchains into IoT ecosystems.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"26 3","pages":"1748-1774"},"PeriodicalIF":34.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10401941/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Blockchain is becoming increasingly popular in the business and academic communities because it can provide security for a wide range of applications. Therefore, researchers have been motivated to exploit blockchain characteristics, such as data immutability, transparency, and resistance to single-point failures in the Internet of Things (IoT), to increase the security of the IoT ecosystem. However, many existing blockchains rely on classical cryptosystems such as the Elliptic Curve Digital Signature Algorithm (ECDSA) and SHA-256 to validate transactions, which will be compromised by Shor and Grover’s algorithms running on quantum computers in the foreseeable future. Post-Quantum Cryptosystems (PQC) are an innovative solution for resisting quantum attacks that can be applied to blockchains, resulting in the creation of a new type of blockchain known as Post-Quantum Blockchains (PQB). In this survey, we will look at the different types of PQC and their recent standard primitives to determine whether they can enable security for blockchain-based IoT applications. It also briefly introduces blockchain and outlines recent blockchain-IoT application proposals. To the best of our knowledge, this is the first study to examine how post-quantum blockchains are being developed and how they can be used to create security mechanisms for different IoT applications. Finally, this study explores the main challenges and potential research directions that arise from integrating quantum-resistance blockchains into IoT ecosystems.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.