Gopal Behera , Sanjaya Kumar Panda , Meng-Yen Hsieh , Kuan-Ching Li
{"title":"Hybrid collaborative filtering using matrix factorization and XGBoost for movie recommendation","authors":"Gopal Behera , Sanjaya Kumar Panda , Meng-Yen Hsieh , Kuan-Ching Li","doi":"10.1016/j.csi.2024.103847","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays, e-commerce platforms, such as Amazon, Flipkart, Netflix and YouTube, extensively use recommender systems (RS) techniques. Collaborative filtering (CF) is used widely among all RS techniques. A CF analyzes the user’s preference from past data, like ratings, and then suggests actual items to the intended user. The existing techniques compute the similarity between users/items and predict the ratings. However, most of them indicate the user’s preference for the items using a single technique, which may produce poor results. This paper proposes a hybrid CF technique to enhance the movie recommendation (HCFMR). The HCFMR consists of two modules. The first module finds the prediction score with the help of matrix factorization (MF) and passes the prediction score as input to the prediction algorithm, i.e., extreme gradient boosting (XGBoost). The second module generates handcrafted features, such as similar users and movies, along with the user, item and global average. Finally, these features are supplied to the XGBoost to predict the rating score of the movie and recommend the topmost movie to the user. We conduct various simulations on real-world datasets to verify the effectiveness of the proposed technique against the baseline techniques. The exploratory outcomes signify that the HCFMR technique outperforms the baselines and provides a better prediction on the benchmark datasets.</p></div>","PeriodicalId":50635,"journal":{"name":"Computer Standards & Interfaces","volume":"90 ","pages":"Article 103847"},"PeriodicalIF":4.1000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Standards & Interfaces","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920548924000163","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, e-commerce platforms, such as Amazon, Flipkart, Netflix and YouTube, extensively use recommender systems (RS) techniques. Collaborative filtering (CF) is used widely among all RS techniques. A CF analyzes the user’s preference from past data, like ratings, and then suggests actual items to the intended user. The existing techniques compute the similarity between users/items and predict the ratings. However, most of them indicate the user’s preference for the items using a single technique, which may produce poor results. This paper proposes a hybrid CF technique to enhance the movie recommendation (HCFMR). The HCFMR consists of two modules. The first module finds the prediction score with the help of matrix factorization (MF) and passes the prediction score as input to the prediction algorithm, i.e., extreme gradient boosting (XGBoost). The second module generates handcrafted features, such as similar users and movies, along with the user, item and global average. Finally, these features are supplied to the XGBoost to predict the rating score of the movie and recommend the topmost movie to the user. We conduct various simulations on real-world datasets to verify the effectiveness of the proposed technique against the baseline techniques. The exploratory outcomes signify that the HCFMR technique outperforms the baselines and provides a better prediction on the benchmark datasets.
期刊介绍:
The quality of software, well-defined interfaces (hardware and software), the process of digitalisation, and accepted standards in these fields are essential for building and exploiting complex computing, communication, multimedia and measuring systems. Standards can simplify the design and construction of individual hardware and software components and help to ensure satisfactory interworking.
Computer Standards & Interfaces is an international journal dealing specifically with these topics.
The journal
• Provides information about activities and progress on the definition of computer standards, software quality, interfaces and methods, at national, European and international levels
• Publishes critical comments on standards and standards activities
• Disseminates user''s experiences and case studies in the application and exploitation of established or emerging standards, interfaces and methods
• Offers a forum for discussion on actual projects, standards, interfaces and methods by recognised experts
• Stimulates relevant research by providing a specialised refereed medium.