An effective decision-making method for building retrofit measures strategy

IF 3.2 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Indoor and Built Environment Pub Date : 2024-02-19 DOI:10.1177/1420326x241234817
Sofiane Rahmouni, Antar Si Mohammed
{"title":"An effective decision-making method for building retrofit measures strategy","authors":"Sofiane Rahmouni, Antar Si Mohammed","doi":"10.1177/1420326x241234817","DOIUrl":null,"url":null,"abstract":"The energy efficiency and sustainability of existing buildings have become a critical concern in Algeria’s efforts to reduce energy consumption and mitigate environmental and economic impacts. To address this challenge, a systematic and effective decision-making method is required to select optimal building retrofit measures in alignment with Algeria’s 2030 energy strategy. In this study, we propose an innovative approach based on the Fuzzy Analytical Hierarchy Process (FAHP), a widely used multi-criteria decision-making method, to evaluate and prioritize different retrofit measures. The FAHP allows decision-makers to have a comprehensive framework for making informed choices by incorporating independently proposed economic, environmental and technical criteria. The results demonstrate the high significance of retrofit measures that enhance thermal insulation, with double glazing and roof insulation emerging as top priorities. Sensitivity analyses confirm the stability and robustness of the decision-making process. This approach offers valuable insights for policymakers and building professionals seeking to implement sustainable and energy-efficient retrofitting strategies in Algeria’s construction sector. By aligning with the country’s energy goals, this decision-making method contributes to achieving a more sustainable and environmentally responsible built environment.","PeriodicalId":13578,"journal":{"name":"Indoor and Built Environment","volume":"153 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor and Built Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1420326x241234817","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The energy efficiency and sustainability of existing buildings have become a critical concern in Algeria’s efforts to reduce energy consumption and mitigate environmental and economic impacts. To address this challenge, a systematic and effective decision-making method is required to select optimal building retrofit measures in alignment with Algeria’s 2030 energy strategy. In this study, we propose an innovative approach based on the Fuzzy Analytical Hierarchy Process (FAHP), a widely used multi-criteria decision-making method, to evaluate and prioritize different retrofit measures. The FAHP allows decision-makers to have a comprehensive framework for making informed choices by incorporating independently proposed economic, environmental and technical criteria. The results demonstrate the high significance of retrofit measures that enhance thermal insulation, with double glazing and roof insulation emerging as top priorities. Sensitivity analyses confirm the stability and robustness of the decision-making process. This approach offers valuable insights for policymakers and building professionals seeking to implement sustainable and energy-efficient retrofitting strategies in Algeria’s construction sector. By aligning with the country’s energy goals, this decision-making method contributes to achieving a more sustainable and environmentally responsible built environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建筑改造措施战略的有效决策方法
现有建筑的能源效率和可持续性已成为阿尔及利亚努力降低能源消耗、减轻环境和经济影响的一个关键问题。为应对这一挑战,需要一种系统有效的决策方法来选择最佳的建筑改造措施,以与阿尔及利亚 2030 年能源战略保持一致。在本研究中,我们提出了一种基于模糊分析层次过程(FAHP)的创新方法,这是一种广泛使用的多标准决策方法,用于评估不同的改造措施并确定其优先次序。FAHP 通过纳入独立提出的经济、环境和技术标准,为决策者提供了一个做出明智选择的综合框架。结果表明,提高隔热性能的改造措施具有重要意义,其中双层玻璃和屋顶隔热成为最优先考虑的措施。敏感性分析证实了决策过程的稳定性和稳健性。这种方法为决策者和建筑专业人士在阿尔及利亚建筑领域实施可持续的节能改造战略提供了宝贵的见解。通过与国家的能源目标保持一致,这种决策方法有助于实现更加可持续和对环境负责的建筑环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Indoor and Built Environment
Indoor and Built Environment 环境科学-工程:环境
CiteScore
6.40
自引率
25.00%
发文量
130
审稿时长
2.6 months
期刊介绍: Indoor and Built Environment publishes reports on any topic pertaining to the quality of the indoor and built environment, and how these might effect the health, performance, efficiency and comfort of persons living or working there. Topics range from urban infrastructure, design of buildings, and materials used to laboratory studies including building airflow simulations and health effects. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Dynamics of indoor volatile organic compounds and seasonal ventilation strategies for residential buildings in Northeast China The indoor thermal environment performance of various air-conditioning system configurations and airflow modes in a large space museum building Leakage identification and correlation coefficient method for industrial workshop production process combining with computational fluid dynamics Synthesis and performance study of biomass-based suppressant and its application in radioactive aerosol sedimentation Modelling of radiation and flow fields in in-duct ultraviolet germicidal irradiation systems with and without ribs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1