Anticipative Bayesian classification for data streams with verification latency

IF 1.1 4区 数学 Q2 STATISTICS & PROBABILITY Journal of Applied Statistics Pub Date : 2024-02-21 DOI:10.1080/02664763.2024.2319222
Vera Hofer, Georg Krempl, Dominik Lang
{"title":"Anticipative Bayesian classification for data streams with verification latency","authors":"Vera Hofer, Georg Krempl, Dominik Lang","doi":"10.1080/02664763.2024.2319222","DOIUrl":null,"url":null,"abstract":"Most of the existing adaptive classification algorithms in non-stationary data streams require recent labelled data for their updates. Such recent labels are often missing. For stream classificatio...","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"44 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2024.2319222","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Most of the existing adaptive classification algorithms in non-stationary data streams require recent labelled data for their updates. Such recent labels are often missing. For stream classificatio...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对具有验证延迟的数据流的预期贝叶斯分类法
大多数现有的非稳态数据流自适应分类算法都需要最近的标签数据来更新。而这种近期标签往往是缺失的。对于数据流分类来说,这就需要有新的标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Statistics
Journal of Applied Statistics 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
126
审稿时长
6 months
期刊介绍: Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.
期刊最新文献
A review and comparison of methods of testing for heteroskedasticity in the linear regression model. A review and comparison of methods of parameter estimation and inference for heteroskedastic linear regression models. An empirical Bayes approach for constructing confidence intervals for clonality and entropy. Optimal distributed subsampling for accelerated failure time models with massive censored data. Inconsistency of three indices in measuring the association between the risk factor and the risk of a disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1