Data-driven multinomial random forest: a new random forest variant with strong consistency

IF 8.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Journal of Big Data Pub Date : 2024-02-23 DOI:10.1186/s40537-023-00874-6
JunHao Chen, XueLi Wang, Fei Lei
{"title":"Data-driven multinomial random forest: a new random forest variant with strong consistency","authors":"JunHao Chen, XueLi Wang, Fei Lei","doi":"10.1186/s40537-023-00874-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we modify the proof methods of some previously weakly consistent variants of random forest into strongly consistent proof methods, and improve the data utilization of these variants in order to obtain better theoretical properties and experimental performance. In addition, we propose the Data-driven Multinomial Random Forest (DMRF) algorithm, which has the same complexity with BreimanRF (proposed by Breiman) while satisfying strong consistency with probability 1. It has better performance in classification and regression tasks than previous RF variants that only satisfy weak consistency, and in most cases even surpasses BreimanRF in classification tasks. To the best of our knowledge, DMRF is currently a low-complexity and high-performing variation of random forest that achieves strong consistency with probability 1.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"2 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-023-00874-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we modify the proof methods of some previously weakly consistent variants of random forest into strongly consistent proof methods, and improve the data utilization of these variants in order to obtain better theoretical properties and experimental performance. In addition, we propose the Data-driven Multinomial Random Forest (DMRF) algorithm, which has the same complexity with BreimanRF (proposed by Breiman) while satisfying strong consistency with probability 1. It has better performance in classification and regression tasks than previous RF variants that only satisfy weak consistency, and in most cases even surpasses BreimanRF in classification tasks. To the best of our knowledge, DMRF is currently a low-complexity and high-performing variation of random forest that achieves strong consistency with probability 1.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据驱动的多叉随机森林:具有强一致性的新型随机森林变体
本文将以往一些弱一致性随机森林变体的证明方法修改为强一致性证明方法,并改进了这些变体的数据利用率,以获得更好的理论特性和实验性能。此外,我们还提出了数据驱动多叉随机森林(DMRF)算法,该算法与 BreimanRF(由 Breiman 提出)具有相同的复杂度,同时满足概率为 1 的强一致性。与之前只满足弱一致性的 RF 变体相比,DMRF 在分类和回归任务中的表现更好,在大多数情况下,它在分类任务中的表现甚至超过了 BreimanRF。据我们所知,DMRF 是目前一种低复杂度、高性能的随机森林变体,它能实现概率为 1 的强一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Big Data
Journal of Big Data Computer Science-Information Systems
CiteScore
17.80
自引率
3.70%
发文量
105
审稿时长
13 weeks
期刊介绍: The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.
期刊最新文献
Shielding networks: enhancing intrusion detection with hybrid feature selection and stack ensemble learning Machine learning and deep learning models based grid search cross validation for short-term solar irradiance forecasting Optimizing poultry audio signal classification with deep learning and burn layer fusion Integrating microarray-based spatial transcriptomics and RNA-seq reveals tissue architecture in colorectal cancer A model for investment type recommender system based on the potential investors based on investors and experts feedback using ANFIS and MNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1